
WL-TR-97-1194

AUTOMATED DESIGN OF BOARD AND MCM
LEVEL DIGITAL SYSTEMS

DR. RANGA VERMURI

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

UNIVERSITY OF CINCINNATI
CINCINNATI OH 45221-0030

OCTOBER 1997

FINAL REPORT FOR 08/05/93-09/15/97 19980520 084
ethodolog

/RASSP\
I Reinventing 1
I Electronic I
* i Design , '

Architecture Infrastructure

DARPA • Tri-Services

OHO QUALITY INSPECTED &

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB, OH 45433-7623

■jt

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than
in connection with a definitely Government-related procurement, the United States Government
incurs no responsibility nor any obligation whatsoever. The fact that the Government may have
formulated or in anyway supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the holder, or any
other person or corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

J. $&&*»*»*;
KERRY HILL, Project Engineer JAMES S. WILLIAMSON, Chief
Embedded Information Systems Embedded Information Systems

Engineering Branch Engineering Branch
AFRL/IFTA AFRL/IFTA

A
STANLEY E. JWAGN^R, Chief
Wright Site Coordinator
Information Directorate
AFRL/IFW

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR
MAILPWG LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR
ORGANIZATION, PLEASE NOTIFY AFRL/IFTA, WRIGHT-PATTERSON AFB OH 45433-
7334 TO HELP US MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR
NOTICE ON A SPECIFIC DOCUMENT.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave
Blank)

2. REPORT DATE

10/15/97
3. REPORT TYPE AND DATES COVERED

Final 8/05/93-9/15/97

TITLE AND SUBTITLE

Automatic Design of Board and MCM Level Digital Systems

AUTHORS

Dr. Ranga Vermuri

5. FUNDING NUMBERS

C: F33615-93-C-1316
PE 63739E
PR A268

TA 02

WU07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Cincinnati

Department of Electrical & Computer Engineering and Computer Sciences

P.O. Box 210030

Cincinnati, OH 45221-0030

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Avionics Directorate
Wright Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7623
POC: Kerry L. Hill. AFRL/IFTA. 937-255-7698 x3604

11. SUPPLEMENTARY NOTES

10. SPONSORING / MONITORING AGENCY
REPORT NUMBER

WL-TR-97-1194

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release: Distribution is Unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This is a Rapid Prototyping of Application Specific Signal Processors (RASSP) program funded by DARPA. The goal of this program is to develop
languages, techniques, and tools for hardware, software cosynthesis of board- and MCM-level Digital Signal Processing (DSP) systems from very high
level requirements specifications. A second goal is to develop a usage guide for the Level 2 Waveform and Vector Exchange Specification (WAVES)

language. The program includes the development of, (1) VSPEC, a declarative interface requirements specification language for VHDL entities, (2)
hardware/software cosynthesis techniques for embedded DSP systems, (3) hierarchical multi-technology hardware partitioning tools, (4) software

compilation techniques to compile behavioral VHDL into C, (5) a WAVES Level 2 usage guide and (6) exploring WAVES usage in conjunction with
BSDL and for hierarchical testing.

i©UALTTflHSfBCTPD^.

14. SUBJECT TERMS

VHDL, Design, Board-Level, MCM-Level, Specification Language

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
306

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Table of Contents

1 Project Goals 1

2 Accomplishments 2

Attachments 4

Appendix A: Board and MCM Level Synthesis for Embedded Systems:
The COMET Cosynthesis Environment 4

Appendix B: VSPEC: A Declarative Requirements Specification Language for VHDL 14

Appendix C: Pipelined Scheduling of Hardware-Software Codesigns 48

Appendix D: RECOD: A Retiming Heuristic to Optimize Resource and
Memory Utilization in HW/SW Codesigns 57

Appendix E: Hardware/Software CoSynthesis: Multiple Constraint Satisfaction
and Component Retrieval 71

Appendix F: A Retiming Based Relaxation Heuristic for Resource-Constrained
Loop Pipelining 78

Appendix G: Multicomponent Partitioning for VLSI System Synthesis 93

Appendix H: Performance Modeling and Tradeoff Analysis During Rapid Prototyping 128

Appendix I: Performance Verification Using Partial Evaluation and Interval Analysis 143

Appendix J: Hierarchical Behavior Partitioning for Multicomponent Synthesis 159

Appendix K: Resource Constrained RTL Partitioning for Synthesis of
Multi-FPGA Designs 169

Appendix L: Using Declarative Specifications and Case-Based Planning for
System Synthesis 185

Appendix M: Extending VHDL to the Systems Level 223

Appendix N: Representing Abstract Architectures with Axiomatic Specifications
and Activation Conditions 232

Appendix 0: Formal Representations for Abstract System Evaluation 240

Appendix P: Abstract Architecture Representation Using VSPEC 246

Appendix Q: VSPEC: A Declarative Specification Methodology for System Synthesis 281

Appendix R: VSPEC: A Declarative Specification Methodology for System Requirements .. 288

Appendix S: Application of Software Synthesis Techniques to Composite Systems 295

1 Project Goals:

The Cosynthesis at Board and MCM Levels for Digital Signal Processors (COMET) Project is a
RASSP Technology Base Program at the University of Cincinnati. RASSP (Rapid Prototyping
of Application Specific Signal Processors) is an Advanced Research Projects Agency, Electronic
Systems Technology Office (ARPA/ESTO) program. The COMET project is monitored by the US
Air Force Wright Laboratory under contract number F33615-93-C-1316.

The goal of the COMET project is to develop languages, techniques and tools for hardware, soft-
ware cosynthesis of board- and MCM-level Digital Signal Processing (DSP) systems from very high
level requirements specifications. A second goal is to develop a usage guide for the Level 2 Wave-
form and Vector Exchange Specification (WAVES) language. The COMET project includes the
development of, (1) VSPEC, a declarative interface requirements specification language for VHDL
entities, (2) hardware/software cosynthesis techniques for embedded DSP systems, (3) hierarchi-
cal multi-technology hardware partitioning tools, (4) software compilation techniques to compile
behavioral VHDL into C, (5) a WAVES Level 2 usage guide and (6) exploring WAVES usage in
conjunction with BSDL and for hierarchical testing.

COMET project statement of work is as follows:

1. Extend VHDL to create VSPEC Specification Language (Requirement 3.2)

2. Develop technology driven VSPEC partitioner (Requirement 3.3)

3. Develop VSPEC-Embedded software Translator (Requirement 3.4)

4. Integration and distribution (Requirement 3.5)

5. WAVES usage guide for electronic module design development (Requirement 3.6)

2 Accomplishments

The accomplishments of the COMET project are summarized as follows:

1. VSPEC Development (CDRL A007)

VSPEC as developed under this effort is a Larch interface language for VHDL. VSPEC
provides a declarative specification mechanism for defining: (i) axiomatic requirements, (ii)
activation conditions (in) internal state, (iv) constraints, and (v) abstract architectures for
systems. VSPEC is fully compatible with VHDL and provides requirement definitions for the
interfaces of entities, functions and procedures.

With the language definition complete a formal semantics for VSPEC was defined using the
Larch Shared Language (LSL). This formal semantics is used to precisely define what VSPEC
means and for verification. The VSPEC parser is being extended currently to generate LSL
directly for use in verification tools.

2. VSPEC Partitioner (CDRL A008)

Several partitioning approaches were developed under this project. Notable of these were the
REBOUND tool and the genetic partitioner for codesigns.

The REBOUND tool generates structural architectures. Accordingly, in the current version
of the hardware/software partitioning tool, concurrent statements are limited to components.
The approach is, however, extensible to other concurrent statements such as processes and
blocks as well.

The genetic partitioner contemplates hardware software codesigns based on a relaxation-
based retiming strategy. The partitioner explores a large number of hardware alternatives
and hardware/software bindings. To aid this process, a detailed performance estimator for
pipelined and nonpipelined codesigns has been developed.

3. VSPEC-Embedded Software Translator

Two tools for software synthesis were developed as a part of this effort. The first was a
stand-alone parser developed around an ad hoc VHDL front end. This system generated
code for the Texas Instruments TMS320 series DSP processor. Example systems included:
(i) a compander system, (ii) an FFT subsystem, (iii) an IFFT subsystem, and (iv) an Iffi.
filter. Each example was coded in VHDL-S, synthesized into C and evaluated on a TMS320
prototyping system.

The examples synthesized generated the capability to generate C for the VHDL-S subset.
Further, the initial example set demonstrated the ability to generate: (i) a generic operating
system kernel, and (ii) interface routines to support executing the C code. VHDL is inherently
parallel in nature while C is inherently sequential. Each VHDL-S process is transformed into
a C process by the translator. These processes are managed by the simple operating system
using message passing for interprocess communication. C routines are also generated to
manage interfaces between software and associated hardware devices. This is primarily used
for I/O associated with the DSP processor.

The second software translation system took the initial results from the stand alone parser
and incorporated them into the SAVANT environment. The SAVANT environment provides
a much richer and more stable platform for building the translator. The object model was

extended to include C publishing routines and additional enhancements were added. The
most significant addition was the ability to generate generic C from VHDL-S. The generic C
code is standard C with TMS320-specific additions. The this code was tested on both Solaris
and Linux platforms.

The final translator delivered here can generate code for either the TMS320 or a generic C
system. It is based on the SAVANT toolset, but has not been ported to the most current
SAVANT release.

Integration and Distribution

All VSPEC software has been integrated and transferred to VHDL community by publica-
tions, presentations and repository access. The software can be accessed by anonymous File
Transfer Protocol (FTP) by contacting the PI of this project. Several publications resulting
from this project are appended in this report.

WAVES Usage Guides (CDRL A009)

A WAVES Level-2 usage guide has been developed. In addition, two detailed case studies
illustrating the use of WAVES Level-2 have been developed. A document describing the use
of WAVES for testing boundary scan devices has been developed. A final document has been
written describing the use of WAVES in conjunction with BSDL.

APPENDIX A :
Board and MCM Level Synthesis for Embedded Systems:

The COMET Cosynthesis Environment *

Ranga Vemuri, Hal Carter and Perry Alexander
Department of Electrical and Computer Engineering

University of Cincinnati, ML. 30
Cincinnati, Ohio 45221-0030

Ph: 513-556-4784; Email: ranga.vemuri@uc.edu

Abstract

COMET is a cosynthesis environment for application-
specific electronic signal processing modules. COMET is
capable of automatically synthesizing multicomponent
hardware-software systems at the board- and MCM- lev-
els. In the COMET environment, system-level specifi-
cations are written in VSPEC, a declarative annotation
language for VHDL entities. COMET contains various
VHDL-centered tools for hardware-software partition-
ing, MCM synthesis, ASIC synthesis, software compi-
lation and performance analysis, and various WAVES-

centered tools for board, MCM- and ASIC level testing.

1 Overview

COMET (Cosynthesis at Board and MCM Levels
for Digital Signal Processors) is a hardware-software
cosynthesis environment for embedded signal process-
ing modules, COMET users can synthesize single board
application-specific DSP (digital signal processing) ar-
chitectures. These target architectures, illustrated
in Figure 1, can contain application-specific ASICS,

FPGAs, MCMS, and off-the-shelf hardware components
along with an off-the-shelf processor which executes
applications-specific software as well as other kernel
functions.

The users' view of COMET is shown in Figure 2. In a
typical top-down design process, COMET users begin
by writing a specification of the system's functional
requirements and constraints in VSPEC. Then, using

"The research reported in this paper is being conducted at
the University of Cincinnati and is supported in part by by the
ARPA RASSP program monitored by the Wright Lab, US Air
Force under contract no. F33615-93-C-1316 and by the Solid
State Electronics Directorate of the Wright Laboratory of the
US Air Force under contract number F33615-91-C-1S11.

the hardware-software partitioning tool, a top-level
hardware-software architecture is generated. The par-
titioning tool uses a library of reusable components.
Each component is a DSP algorithm bound or to be
bound to hardware or software. The component li-
brary also contains a set of off-the-shelf processors.
The output of the partitioning tool is an architecture
of hardware and software components whose behav-
ior is specified in procedural VHDL. In addition, the
software components are bound to an off-the-shelf pro-
cessor and the hardware components are bound to var-
ious ASIC and packaging technologies. Hardware com-
ponents in the design are submitted to hardware syn-
thesis tools and the software components to software
synthesis tools. An interface synthesis tool is used
to synthesize all the interface logic to support inter-
component hardware-software communication proto-
cols. An architecture integration tool composes the
various components into a coherent board-level design
that can be processed by commercial board-level place
and route tools.

COMET environment also contains test generation
tools based on WAVES and performance analysis tools.
COMET tools are also interfaced to various commercial
and university tools, especially from the RASSP com-
munity, to facilitate simulation, logic synthesis, syn-
thesis of board-level glue logic and ASIC, MCM and
board-level layout synthesis.

2 "VSPEC Specification Language

VSPEC is a declarative annotation language for VHDL
entities. Through VSPEC designers specify require-
ments the system design should meet and constraints
on its implementation. A VSPEC specification consists
of a collection of logical statements and declarations

immypm'mHiuaunuuummifftKHfffi^in^fm

M«ninry

Figure 1: COMET's Target Architectures

bflfl^fl^.wjjw

smsa
Ubmyof
Components

Hardware
Design

Software
Compllaflon

Integration

Embedded
Software

Slmulaaon
and
Verlflcatlan

Figure 2: COMET Cosynthesis Environment

that annotate a VHDL entity construct. Consider the
following entity specification of a multiplexor:

entity mux is
port (dO, dl, cntrl : in bit;

output : out bit);
end muz;

In this example, the entity names the device and de-
fines input and output ports. However, there is no
indication of how the multiplexor functions or what
performance constraints it must adhere to. A VHDL

architecture describes the behavior or structure of
an entity. Behavior can be described through com-
municating and concurrently executing sequential pro-
cesses. Structure can be described through component
instantiation and interconnection, VHDL allows the
user to specify the behavior of a system by defining
a single artifact (architecture) embodying that be-
havior. Although alternative behaviors may be spec-
ified by multiple architectures of the same entity,
these architectures must be explicitly enumerated.
Therefore, implementational biases occur while for-
mulating the functional requirements since the user
is forced to commit to one or more designs.

The VSPEC language was developed to support the
definition of requirements prior to the specification
of designs, VSPEC has constructs to allow its users
to declaratively specify input pre-conditions, output
post-conditions, state variables, constraints, and other
requirements at the entity level. The following is a
VSPEC definition of a simple multiplexor:

entity mux is
port (dO, dl, cntrl : in bit;

output : out bit);
ensures

output = ((dO and cntrl) or
(dl and not cntrl));

constrained by
power < 4 and
size < 20

end mux;

This VSPEC entity describes the interface to the com-
ponent as well as the desired function and constraints.
The ensures clause declaratively states the function
of the multiplexor. This definition allows many differ-
ent implementations to be developed for this specifica-
tion as long as the specification meets the requirement
stated here. The constrained by clause specifies con-
straints placed on the power and area of the entity.

The VSPEC interface language affects only the VHDL
entity declaration. Six VSPEC clauses are allowed in
the entity:

• assumes logical-expression;

Describes the pre-conditions that must be met
before this entity can be used. The logi-
cal-expression is denned over the set of inputs of
the device.

• ensures logical-expression;

Describes post-conditions that must be true
when the entity functions correctly. The logi-
cal-expression is denned as a relation between the
inputs of the device and its outputs.

• constrained by logical-expression;

Describes the constraints placed upon the entity.
These constraints include size, timing, heat dissi-
pation, power consumption and clock speed. The
logical-expression is defined over pre-defined vari-
ables representing potential constraints.

• state typedJdentifierJist;

A list of typed variables used to store the state of
the entity. These variables maintain their values
from one entity invocation to the next.

•. modifies identifier-list ;

List of variables and signals this entity can mod-
ify. All elements listed must be denned in the
state clause or in the entity's port declaration
and of type out, inout, or buffer.

• VSDL-type based on logical-expression;

Associates a user defined VHDL type with a for-
mal, logical definition. This allows inferences in-
volving user defined types.

Architectures in VSPEC A general architecture
is a collection of interconnected high level specifi-
cations that serves as a template for system defi-
nition. The general requirements of each compo-
nent are known, the interaction between them is
known, but the specifics of the implementation may
not be known. The VHDL architecture construct
supports specification of interconnections among en-
tities. Whether the entity structures referenced by
the architecture have associated architectures deter-
mines whether there are just requirements or designs
associated with each entity.

Figure 3 shows a specification of a batch sequential
sort and search system. The entity structures associ-
ated with each component in batch-seq are specified
using VSPEC with no specific associated algorithm.
The sort component must produce a sorted output and
the search component must find a key given a sorted
input. Algorithms for each, perhaps in the form of
behavioral architectures, must be specified at a later
time.

VSPEC Support Environment AU VSPEC ex-
pressions translate into REFINE declarations. These
declarations support a formal inference process, exe-
cutable specifications and REFINE based software syn-
thesis tools. REFINE is a language that allows pro-
grammers to write code in a wide range of styles. This
includes high level constructs such as sets and trans-
formation rules down to more traditional procedural
language constructs such as loops and if-then state-
ments [1]. REFINE specifications are executable. This
allows designers to test their system at a very early
point in the design process.

3 System Performance Estimation

Accurate performance estimation is critical to the suc-
cess of a design synthesis system. The COMET perfor-
mance estimator is used to evaluate the performance,
in terms of area, speed, throughput rate, and power
dissipation, of the library components as well as the
performance of a contemplated hardware-software ar-
chitecture of a system. The estimator can be used
interactively or through the partitioning engine to fil-
ter inferior architectures and to select a constraint-
satisfying hardware-software binding for a given spec-
ification. As shown in Figure 4, various hardware-
software alternatives can be selected for each compo-
nent in the architecture and for each selected configu-
rations performance envelopes can be generated.

Hardware Performance Estimation: Perfor-
mance estimation for hardware components is done
by detailed analysis of the operational behavior of
the component. A data-flow control-flow graph (DFG)

is extracted from the behavioral specification. The
DFG is scheduled across control-steps using register
level hardware modules selected from a module li-
brary. From this scheduled and operator-bound DFG
accurate estimates of area, clock-speed and through-
put rate are made. Estimation of power consumption

IIMI*B»*PUIII—»T«hnologye«liLUon

entity example is
port (list: in array of element;

k: in integer;
output: out element);

modifies output;
ensures

(fa e:element)
(output = e) <=>

(e in input and
k = key(e));

end example;

architecture batch-seq of example is
component sorter is
sort
port (inlist: in array of element;

outlist: out array of element);
component searcher is
bin_search
port (inlist: in array of element;

value: in integer;
return: out element);

begin
bl: sorter

port map (list,tmp);
b2: searcher

port map (tmp,k,output);
end batch-seq;

entity sort is
port (input: in array of element;

output: out array of element);
modifies output;
ensures

bag(output) = bag(input) and
ordered(output);

end sort;

entity bin_search is
port (input: in array of element;

k: in integer;
output: out element);

modifies output;
assumes

ordered(input);
ensures

(fa e:element)
(output = e) <=>

(e in input and
k = key(e));

end bin_search;

Figure 3: Batch sequential architecture for finding a
value in a list.

1*9*
Options

"—-'
MMia

opfern
MXC .

«—T

-«—— 1CX
fHMWl 1

 _ |
 P

Figure 4: Performance Estimation

is based on the generation of profile data for typical
stimuli of the component. The profile data is used
to generate estimates of switching activity in the final
design. Data from a technology library that contains
both ASic fabrication and packaging technology pro-
files is used to generate concrete technology-dependent
estimates from the abstract estimates. Some of the
hardware performance estimation work has been done
as part of the Mss and DSS projects [3, 2].

Software Performance Estimation A static per-
formance evaluation method based on ISA and code
models is being developed to provide estimates of
DSP software execution time. These estimates will be
used to guide system and software partitioning such
that timing constraints can be satisfied by the soft-
ware synthesis algorithms. Once software has been
created and compiled, the machine code is evaluated
to assess whether timing constraints and throughput
requirements have been satisfied. The static perfor-
mance evaluation method consists of two graph the-
oretic models: (1) a pipelined instruction execution
time (PIET) model which is accurate to the clock cycle
level, and (2) an instruction stream execution graph
(ISEG) model. The PIET model is constructed for
each processor with a unique instruction set architec-
ture and takes into account all data path dependen-
cies including inter-instruction dependencies for accu-

1

pipeline instruction execution
time model

"

graph model for
instruction stream

Figure 5: Software Performance Evaluation

rate time evaluation. The IS EG model is constructed
for each software program being analyzed and is di-
rectly generated from the machine language instruc-
tion stream. The ISEG model evaluates all data and
control paths within the instruction stream during its
formation.

The flow of activities to perform static performance
evaluation is shown in Figure 5. The objective is to
obtain the estimated time of execution between any
two points in the instruction stream. This time is
obtained as an aggregate of the individual operation
times of each instruction in the instruction stream
given the PIET model of the ISA of the target proces-
sor. All pipelined activity and potential hazards are
considered. The execution of each successive sequen-
tial instruction is evaluated until a branch instruction
is seen. These successive sequential instructions are
grouped into into basic blocks. The number of ma-
chine cycles for each basic block is determined using
the PIET graph. The ISEG graph is created as a stan-
dard control flow graph where basic blocks and branch
instructions are represented as nodes in the graph.
Edges in the graph represent flow of control.

The determination of execution time between any two
nodes in the graph proceeds by iteratively reducing
the flow network between the two nodes until the two
nodes are merged into a single node. Each reduction

step proceeds by first examining the flow network and
identifying a basic structure which can be reduced,
followed by computing the execution time of basic
structure and reducing the structure to a single node
whose label is the derived execution time. Branches
and loops are assessed based on the branch taken/not
taken probabilities which are in turn obtained from
the benchmark data patterns at the inputs of the soft-
ware being evaluated. Note that this data is usually
expressed in worst-case terms if worst-case execution
performance estimates of the software is desired. If
the estimated execution time of the entire software
program is desired, the entire ISEG graph is reduced
to one node by the graph analysis algorithm. The esti-
mated execution time can then be compared with the
timing constraints of the system to determine if the
synthesized software satisfies the performance goals.

Reusual Behavioral Components COMET uses
a library of reusable hardware, software or unbound
components for synthesis. Performance of each li-
brary component is characterized using the same per-
formance estimation tools described above. System
synthesis in COMET is dependent on the availability of
one or more library components for each function spec-
ified in VSPEC. If a VSPEC function in a specification
has no corresponding component in the library, then
the user is asked to supply a component along with its
operational behavior description in VHDL. The perfor-
mance of the description for various target hardware
and software technologies will be evaluated using the
performance estimation and the component along with
this data will be stored in the library for later use (Fig-
ure 6).

4 System Partitionin

The goal of system partitioning is to generate a first
level hardware-software architecture of the system by
partitioning the system specification into specifica-
tions of hardware components and software compo-
nents. The hardware components will be further pro-
cessed by hardware synthesis tools. The software com-
ponents will be bound to execute on a selected DSP or
general purpose processor configuration. The hard-
ware and software components will be connected to
constitute a VSPEC-VHDL architectural description of
the system. The functional requirements and con-
straints stated in the VSPEC specification drive the
derivation of the specific hardware-software mix. Fig-

9 -,

C<
"^

S^CfftaMM
taVSPCGYHDL

■J
1

"—'
f|| «««. ■

P

■

U»»y<HCUii>ju.»iiu

M nncnovwtf TOwfr PvrtMfluncv ■
Dwi torWtooi TaraM HMkaMSoOMf»
TMfiaotogtts)

/«PEC _^\
V nUGDonB/GoABtflnno /

Ertirator

#1 CotDBOnMlB 1 HHdwii Satwiw

-IT*-« ' Ettmtor

EdiMcr

Figure 7: System Partitioning in COMET

ure 7 shows the system partitioning tool in COMET.

Initially, the VSPEC system specification is refined
based on queries into the design library. As a result
of the queries, components are selected based on their
ability to satisfy the system function and constraint
attributes. In case the existing components do need
meet the requirements, a design that partially satisfies
the requirements may be generated. Alternatively, the
designer may be queried for additional components.

Figure 6: Performance Analysis for Library
Components

5 Hardware Synthesis

COMET hardware synthesis system consists of a multi-
component partitioning engine and a set of synthesis
tools for ASIC, FPGA and MCM synthesis (Figure 8).

Multicomponent Partitioning Engine The par-
titioning engine is a hierarchical partitioning and
package binding tool that accepts behavioral specifi-
cations in VHDL, constraints on area, power consump-
tion, pin counts, speed and cost and generates a hier-
archical partition of the specification with each com-
ponent in the partition bound to a package among
a set of available packages. The partitioning engine
uses a back-tracking algorithm for,constraint-directed
search. Power estimation is based on data gathered
by dynamic profiling of the VHDL specification using
typical stimuli.

10

htMQTKtlOT

Figure 8: Hardware Synthesis Flow in COMET
Figure 9: DSS High Level Synthesis System

High Level Synthesis of ASICs: DSS The ASIC
synthesis system DSS (Distributed Synthesis System)
accepts behavioral specifications in VHDL and con-
straints on clock period and area. It generates register
level designs in VHDL. Register level designs contain
two parts: a data path and a finite state controller.
The data path is in the form of structural VHDL in
which each component is instantiated from a prede-
fined parameterized register level component library.
DSS architecture is shown in Figure 9. For an overview
of the DSS system, see [2].

Register level designs generated by DSS can be pro-
cessed using various layout synthesis tools including
Lager IV and Mentor Graphics' GDT tools. Figure 10
shows design flow using the DSS system. Test vectors
for register-level and switch-level simulations are auto-
matically created using a test-bench compiler. Figure
11 shows the design a processor (Move Machine) gen-
erated by DSS. DSS has been used to generate numer-
ous designs including some industrial strength designs
by Texas Instruments [4].

VHDL Simulator

 1

Tulbencfc

VHOLConpenent
Library (RT-Level)

___^ «• tj—Mj * l««la »yacfcaali

Skueunl
Synthe«
SywWn

OH Generator
Library

Saritch-Level
Simtxator

MCM Synthesis: MSS MCM synthesis environ-
ment MSS [3] is embedded in COMET to facilitate syn-

Figure 10: ASIC Synthesis Using DSS

11

Figure 11: Move Machine

thesis of multichip modules. The tools in the MSS

environment are shown in Figure 12. Behavior spec-
ifications for MSS are written in VHDL. Performance
descriptions are written in PDL (Performance Descrip-
tion Language) [5, 6]. Multichip designs can be gener-
ated in two ways. As shown in Figure 12, register level
designs generated by DSS can be partitioned into mul-
tiple chip designs. Alternatively, as shown in Figure
13 an integrated behavior synthesis and partitioning
step can be performed to obtain multichip designs di-
rectly. These multichip designs are then processed by
package level place and route tools. We currently use
Mentor Graphics MCM Station and plan to use Harris
EDA Finnesse system in near future. Figure 14 shows
the MCM design of the Find processor generated using
the MSS tools.

Anporant
Utfv.VMOL

Li—U-L

GotnpOMrt
l»r«y(VHOq

RagmrlMlMCM
Daepi (VHOl)

HTMiamou» i

MunLMITMr
(IRSM)

6 Software Synthesis
Figure 12: Multicomponent Synthesis System,
MSS

The software synthesis tools in COMET translates DSP-

based software behavioral specifications expressed in
a subset of VHDLinto efficient machine code capable
of being executed in a multiprocessor environment.
The overall approach to software synthesis, shown in
Figure 15 is to translate behavioral descriptions ex-
pressed in VHDL into C and then use commercial C
compilers to translate C into machine code to execute
on the target processor. In this way, any processor
with a C compiler can be used as a target. The cur-
rently supported processors are the Texas Instruments

12

VK3LtorMCMaid
BOWS DMI^I

MF for Synttwaa

M « X Jw.-j.".;iiLiL'y.gp.w.-.L.

Figure 13: Partitioning with Synthesis in MSS

TMS430C51, Sun Microsystems SPARC, and Intel
80386. As explained.previously, the compiled code
can be statically analyzed for timing performance to
ensure compliance with timing constraints expressed
in the VSPEC specification.

The VHDL subset used as input for software synthe-
sis is similar to that used for ASIC synthesis [2]. VHDL

behavioral constructs are fully supported along with a
limited subset of structural constructs. Explicit tim-
ing , such as VHDL after clauses or specific time in
wait statements, is not supported.

Translation into C is a straightforward process. The
code generator is encapsulated in template functions
to allow future extensions to languages other than C.
For example, the code generator objects can be easily
changed to output Ada source code strings rather than
C source code strings.

The execution environment consists primarily of a
small multitasking operating system kernel which
will provide interprocess communication service, task
management, and input/output support. The task
scheduler will create, maintain and monitor all tasks
in the run-time space, while the interprocess commu-
nication protocol will support a simple message pass-

Figure 14: Find MCM

Lib

Comma. |
protocol

ANSIC

Figure 15: Software Synthesis Flow in COMET

13

ing mechanism where a process writes its request and
data in a message channel whenever it tries to com-
municate with others, and then optionally waits until
a response is received. The I/O drivers will provide
a simple stream capability with support for objects of
arbitrary width.

7 Test Tools in COMET and MSS

COMET and MSS contain various tools for the testing
and simulation of designs as the design process pro-
gresses. Designs from behavioral level to gate level
are expressed in VHDL; any VHDL simulator can be
used to simulate these designs. Test vectors are au-
tomatically generated at various levels of abstraction.
These test generation tools take WAVES files as input
and generate WAVES files as output. As shown in Fig-
ure 12, at the behavior level, the users write WAVES

data sets to simulate behavioral descriptions. A mul-
ticomponent test-bench compiler translates data sets
into individual WAVES data sets for each of the chips
in the multichip design. The data set also contains
expected responses so that automatic comparison be-
tween expected and actual responses can take place.
Switch level simulation is facilitated by a switch-level
test-bench compiler that generates switch-level tests
from WAVES data sets.

In addition to the automatically generated tests, users
can add additional tests to the WAVES data sets. To
aid users in this process, WAVES usages guide for mul-
ticomponent designs addressing both WAVES Level 1
and Level 2 constructs are being developed [7, 8].

8 Conclusion

COMET design environment is under development as
part of the RASSP program. MSS and DSS systems
have been operational for over two years; their de-
velopment has been funded separately by Solid State
Electronics, Wright Lab and ARPA. COMET tools sig-
nificantly advance the state of the art in automated
and vertically integrated synthesis systems. Various
tools in the COMET cosynthesis system are interfaced
with other commercial and university tools within
the RASSP community and produce design and test
files in standard notations such as VHDL and WAVES.

Through the use of the VSPEC notation, the COMET
environment supports design synthesis from abstract,

declarative specifications of board and MCM level dig-
ital signal processing architectures.

Acknowledgements Besides the authors, the
COMET team includes Phil Baraona, Yueqin Lin, Rick
Miller, John Penix, John Rowe, Vinoo Srinivasan, Jeff
Walrath, and Danjin Wu.

References

[1] "Refine User's Guide, Version 3.0", Reasoning Sys-
tems Inc., Palo Alto, CA, May, 1990.

[2] Jay Roy, Rajiv Dutta, Nand Kumar, and Ranga
Vemuri, "DSS: A Distributed Synthesis System for
VHDL Specifications", Design and Test of Comput-
ers, pp. 18-32, June 1992.

[3] Ranga Vemuri et al., "An Integrated Multicom-
ponent Synthesis System for MCMs", IEEE Com-
puter, pp. 62-74, April 1993.

[4] Ranga Vemuri et al., "Experiences in Functional
Validation of a High Level Synthesis System", 30th
Design Automation Conference, pp. 194-201, 1993.

[5] Ram Mandayam and Ranga Vemuri, "Perfor-
mance Specification using Attribute Grammers",
Design Automation Conference, June 1993.

[6] Ranga Vemuri, Ram Madayam, and Vijay Meduri,
"Performance Estimation and Tradeoff Analysis
During Rapid Prototyping", University of Cincin-
nati, July 1994.

[7] W. Zhou, H. Hirsch, and R. Vemuri, "WAVES and
VHDL Modeling Guidelines", RL-TR-94-56, Rome
Laboratory, May 1994.

[8] Jeff Walrath, John Rowe and Ranga Vemuri,
WAVES Level 2 Usage Guide with Annotated Ex-
amples, under preparation.

14

APPENDIX B :
VSPEC: A Declarative Requirements

Specification Language for VHDL

Phillip Baraona, John Penix and Perry Alexander
Department of Electrical and Computer Engineering

Knowledge-Based Software Engineering Lab
The University of Cincinnati

Cincinnati, OH USA 45221-0030
pbaraonaQuceng.nc.edu

December 14, 1994

Abstract

VHDL allows a designer to describe a digital system by specifying a specific design artifact
.that implements the desired behavior of the system. However, the operational style used by
VHDL forces the designer to make design decisions too early in the design process. In addition,
there is no means for specifying non-functional performance constraints such as heat dissipa-
tion, propagation delay, clock speed, power consumption and layout area in standard VHDL.
Thus, VHDL is not appropriate for high level requirements representation. VSPEC is a Larch-like
requirements language used with VHDL that solves these problems. VSPEC adds seven clauses
to the VHDL entity structure that allow a designer to declaratively describe the data transfor-
mation a digital system should perform and performance constraints the system must meet.
The designer axiomatically specifies the transformation by defining predicates over entity ports
and system state describing input precondition and output postconditions. A constraints sec-
tion allows the user to specify timing, power, heat, clock speed and layout area constraints. In
combination with the architecture declaration, collections of VSPEC specified components can
define a high level architecture as interconnected collections of components where requirements
of components are known (via a VSPEC description), but implementations are not. This work
presents the VSPEC language and associated design methodology.

1 Introduction

VSPEC is a language for declaratively specifying digital systems. It annotates the hardware descrip-

tion language VHDL by adding seven new clauses to the entity construct. These clauses allow a

digital system to be specified using a declarative style as opposed to the operational style of VHDL.

15

December 14, 1994 2

With VHDL alone, the only way to specify a digital system is by describing a specific design artifact

that implements the system's desired behavior. On the other hand, VSPEC allows the designer to

describe the function of the system without defining the eventual implementation. In short, VSPEC

allows the specification of "what" a system should do as opposed to the VHDL description of "how"

the system will do it. This is consistent with Hoare's definition of specifications [9].

In addition to allowing the specification of "what" instead of "how", VSPEC addresses another

limitation of VHDL: specifying performance constraints. When designing a digital system, meeting

certain non-functional (i.e. performance) constraints is equally as important as creating a system

that functions properly. A flight control system so slow that it calculates a flight correction after the

plane crashes is obviously inadequate. Since they are so important in digital systems, performance

constraints should be specified very early in the design process. However, VHDL does not provide

a consistent mechanism for specifying these types of constraints. VSPEC addresses this problem

by allowing the designer to specify performance constraints such as heat dissipation, propogation

delay, clock speed, power consumption and layout area.

Another way of viewing VSPEC is as a Larch style interface language for VHDL. The Larch family

of specification languages supports a two-tiered, model-based approach to specifying programs [7].

A Larch specification consists of components written in two languages: an Interface Language

and the Larch Shared Language. Interface languages are used to specify the interfaces between

program components, including component inputs and outputs as well as the observable behavior

of the component. Interface languages exist for a variety of programming languges, including C [6],

C++ [2], Modula-3 [12] and Ada [5].

Definitions written in the Larch Shared Language (LSL) are the second component of a Larch

specification. LSL is a formal algebraic language that defines the underlying sorts and operators

used in the Larch Interface Languages [8, 3]. In the VSPEC system, REFINE [17] is the primary

shared language. REFINE is a language that contains a wide range of constructs, from high-level

16..;

December 14, 1994 3

sets and transformations down to more traditional loops and conditional statements. All VSPEC

clauses can be translated into a REFINE representation. There are two main reasons REFINE was

chosen as the primary shared language for VSPEC.

First, LSL specifications are not executable. Since REFINE is a broad spectrum programming

language, some VSPEC specifications are executable. This is a very important feature for a digital

system specification language such as VSPEC. VHDL descriptions of digital system are simulated as

early as possible in the design cycle so that bugs can be found when they are the least expensive

to fix. This same concept extends to a VSPEC requirements specification of a system. The sooner a

bug in the requirements specification is found, the less expensive it is to fix. One way that problems

with the specification can be found at the earliest possible point in the design cycle is by executing

the specification.

The second reason REFINE was chosen as the primary shared language is that it supports synthesis of

behavioral VHDL from VSPEC. REFINE is one part of a suite of software synthesis tools. Supporting

synthesis of behavioral VHDL from VSPEC is one of the main long term goals of this research.

VSPEC is one part of the COMET research project. The goal of this project is to develop better

techniques for rapid prototyping of digital signal processing systems. A detailed description of

COMET is beyond the scope of this paper [22], but as the project overview in Figure 1 shows, a

COMET user begins by writing a description of the function and constraints of the system in VSPEC.

This description is then used to partition the system into hardware and software components with

an architecture for connecting these pieces together. Each of these components is synthesized and

integerated into a board level implementation of the system that is simulated and verified against

the original specification.

The remainder of this paper gives a more detailed description of VSPEC. The next section briefly

describes the VHDL constructs that are important in VSPEC. Section 3 gives a detailed description

of each of the seven VSPEC clauses. This is followed by an extended example where VSPEC is used to

17

December 14, 1994

Haidwv
DMign

Embaildad
Soltwara

SimuMion
an)
Vwilicalion

Figure 1: Overview of the COMET project.

specify a small microprocessor. Following this is a section that describes the formal representation of

VSPEC. Section 6 discusses other work related to VSPEC and the paper concludes with a description

of the current status and future directions for this research.

2 Important VHDL Constructs

This section gives a very brief description of two of the VHDL constructs used in VSPEC. It contains

enough information to explain why the VSPEC annotations are needed in a specification language

for digital systems. For a more complete description of VHDL, refer to the VHDL language reference

manual [10] or a textbook on VHDL [16]. If you are already familar with VHDL, you can skip this

section and begin reading about the VSPEC clauses described in Section 3.

Two of the more important constructs in VHDL are entities and architectures. A VHDL entity

18

December 14, 1994 5

declares a digital component by defining the component's interface. The function of the component

is not defined in the entity structure. Instead, each entity has one or more associated architectures

where the function of the component is described. This is the "big picture" of how entities and

architectures are used. The next few paragraphs give a more detailed description of each of these

constructs, starting with the syntax for a VHDL entity:

(entity-declaration) ::= ENTITY (identifier) IS
(entity-header)
(entity-declarative.part)
[BEGIN
(entitystatemenLpart)]
END [(Entitysimple.name)];

The most important portion of the entity declaration is the entity header. The only part of the entity

header currently used in VSPEC is the port clause. A port clause defines the inputs and outputs of

the component. Here is an example entity declaration for a simple two input multiplexor:

ENTITY vhdl_mux IS
PORT (DO, Di, cntrl : IN BIT;

output : OUT BIT);
END vhdl_mux;

Notice that this entity merely defines the types of the inputs and outputs to the multiplexor. It

does not contain any description of the function of the entity.

The function of the multiplexor is described in the VHDL architecture. Each entity has one or more

associated architectures. An architecture is used to define the behavior of a specific implementation

of an entity. The syntax of the architecture construct is as follows:

(architecture-body) ::= ARCHITECTURE (identifier) OF (Entity.name) IS
(architecture-declarative-part)

- 19

December 14, 1994 6

BEGIN
(architecturestatemenLpart)
END [{Architecturesimple-name)];

Detailed descriptions of each portion of the architecture are beyond the scope of this document

(see [10,16]). Suffice it to say that the declarative part of the architecture defines the types, signals

and components used by the architecture while the statement part defines the behavior or structure

of the entity. Consider the following architecture for the multiplexor entity above:

ARCHITECURE behavior OF vhdl_mux IS
BEGIN
PROCESS (DO, Dl, cntrl)
BEGIN

IF cntrl = 0 THEN output <= DO;
ELSE output <= Dl;

END PROCESS
END behavior;

This is an example of a behavioral architecture. Behavioral architectures use ADA-like program-

ming constructs to define the function of an entity. In this simple example, an if-then statement is

used to assign a value (<= is used for signal assignment) to the output port based on the value of

cntrl. Although this is a simple example, behavioral architectures can be quite complex. Auxil-

iary procedures and functions can be written in the declarative part of the architecture and entire

packages of library routines can be used within the architecture. With these auxiliary procedures

and packages, a behavioral architecture can be defined using a large program. No matter what size,

all behavioral architectures have one thing in common: they define a single implementation of the

behavior of an entity.

Structural architectures are the second common type of VHDL architectures. This architecture type

defines the subcomponents an entity is composed of and how those subcomponents are connected.

For example, the behavior of the multiplexor could also be defined using and, or and not gates

connected as shown in Figure 2. In VHDL, this is represented using the following architecture:

20

December 14, 1994

DO_set
cntrl

output

cntrl_prime
Dl_set

Figure 2: Structural Implementation of Multiplexor

ARCHITECTURE structure OF vhdl_mux IS
COMPONENT and.gate PORT (inl, in2 : IN BIT; output : OUT BIT);
END COMPONENT;
COMPONENT or_gate PORT (inl, in2 : IN BIT; output : OUT BIT);
END COMPONENT;
COMPONENT not_gate PORT (input : IN BIT; output : OUT BIT);
END COMPONENT;
SIGNAL DO_set, Dl_set, cntrl_prime : BIT;

BEGIN.
and_l : and.gate PORT MAP (inl=>DO, in2=>cntrl, output=>DO_set);
and_2 : and.gate PORT MAP (inl->Dl, in2=>cntrl_prime, output=>Dl_set);
not_l : not_gate PORT MAP (input=>cntrl, output=>cntrl_prime);
or_l : or_gate PORT MAP (inl=>DO_set, in2=>Dl_set, output=>output);

END structure;

In this example, the declarative part of the architecture defines three components and three signals.

The component declarations (and_gate, or_gate and not_gate) define the inputs and outputs of

three sub-components that will be used in this architecture. The behavior and/or structure of these

three sub-components must be defined by an entity/architecture pair somewhere else in the system

(not shown here). Another VHDL construct, the configuration, is used to map components to the

the entity/architecture pair that define the behavior of the component. The three signals declared

(D0_set, Dl_set and cntrl_prime) are used to connect these three components together as shown

in Figure 2.

Instances of each of the components in the architecture's declarative part are created in the state-

ment part (between begin and end). The port map for each instance shows how that particular

21

December 14, 1994 8

component instance; is connected to the signals in the architecture.

Although this example is very small, the same basic concepts denned here scale to much larger sys-

tems. This multiplexor could be part of an ALU which is a sub-component of a large microprocessor

which is itself one component on a board level system. The same type of structural architecture is

used to connect the system together at each of these levels. The lowest level (the and, or and not

gates in this example) contains a behavioral description of the components. Because VSPEC is an

extension of VHDL, these features for dealing with large systems are also found in VSPEC.

3 The VSPEC Clauses

The VSPEC language annotates VHDL by adding seven new clauses to the entity structure. The

modified syntax for the entity structure becomes:

(entity-declaration) ::= ENTITY {identifier) IS
(entity-header)
(vspec-dauseJist)
(entity-declarative-part)
[BEGIN]
END [(Entitysimple-name)];

The only change made to the VHDL syntax was the addition of the optional VSPEC clause list to the

entity declaration. L All other constructs remain intact. A VSPEC clause list is a list of the seven

VSPEC clauses separated by commas:

(vspec-dauseJist) ::= (vspec-dause) { ; (vspec.clause) } ;

1This statement is not completely accurate since VHDLs expression syntax was also extended to include quantifiers,
logical implication and support for sets and sequences. This is described in a little bit more detail in the VSPEC
Language Reference Manual [13].

22

December 14, 1994 9

(vspec-dause) ::= [(requires.clause)] | [(ensures.clause)] | [(state.clause)] |
[(constrained-by.clause)) \ [(modifies.clause)] \ [(based.on.clause)] j [(includes.clause)]

These VSPEC clauses can be grouped into four broad classes. The first class defines the function

of the entity and includes the requires and ensures clauses. The next class declares the internal

state of the entity in the state clause. The third type of VSPEC clause is used to define the

constraints placed on the system. The constrained by and modifies clauses fall into this category.

Finally, the includes and based on clauses are used to help map the VSPEC definition to its formal

representation in REFINE. These are the only two clauses that can appear more than once in a

VSPEC clause list. The following sub-sections describe each of these clauses in a little bit more

detail.

3.1 Requires Clause

{requires.clause) ::= REQUIRES (logical-expression) ;

The requires clause states the pre-condition for the entity. If the entity's inputs and current state

make the requires logical expression true, then the entity is guaranteed to perform its specified

function. The behavior of the entity is undefined if the requires clause is false. A designer that

uses an entity specified with VSPEC must ensure that the requires logical expression is true before

the entity is used. Consider the following example:

ENTITY search IS
PORT (input : IN ARRAY OF record.type;

key : IN INTEGER;
output : OUT record_type)

REQUIRES sorted(input);
ENSURES element_of(output, input) AND output.keyval = key;
INCLUDES "sort.re", "set.re";

END search;

23

December 14, 1994 10

In this example, sorted is a function denned in the file "sort.re" (see description of includes clause

in Section 3.6) that returns true if the array passed in is in order and false otherwise. The search

entity above will only function properly if the input array is sorted. If the input is not in order,

the function of search is undefined. The function of all entities is undefined if the requires clause

is false. For this reason, it is best to keep the pre-conditions expressed in the requires clause as

simple as possible. The more conditions that must be met for the requires clause to be true (i.e.

the more complex the pre-condition), the more difficult it will be to meet the pre-condition and use

the entity. Thus, the pre-condition should be kept as simple as possible. A pre-condition of true

implies the entity has no pre-condition. It must function properly on all input values.

One portion of the requires clause definition has been kind of ignored to this point: What is a

logical expression? All logical expressions in the VSPEC clauses use a syntax that is an extension

of VHDL. The VHDL expression syntax supports the standard boolean expressions and, or and not.

VSPEC extends this syntax by adding constructs for variable quantification and logical implication.

In addition, the VSPEC expression syntax includes constructs for sets and sequences. See the VSPEC

Language Reference Manual [13] for a more detailed description of the syntax of VSPEC expressions.

3.2 Ensures Clause

(ensures.clause) ::= ENSURES {logical-expression) ;

The ensures clause states the post-condition of the entity. A designer implementing an entity

specified with VSPEC must ensure that this logical expression is true whenever the entity processes

valid input (i.e. input that makes the requires logical expression true). Consider the following

example:

ENTITY vhdl_mux IS
PORT (DO, Dl, cntrl : IN BIT;

24

December 14, 1994 11

output : OUT BIT);
REQUIRES true;
ENSURES output = (DO AND cntrl) OR (Dl AND (NOT cntrl));

END vhdl_mux;

This is a VSPEC description of the two input multiplexor specified in Section 2. The requires

clause states that this entity is guaranteed to work for all legal values of the input varaibles. The

logical expression in the ensures clause declaratively specifies the function of the entity. The logical

expression is a condition that must be true when the entity functions properly. Thus, the ensures

logical expression describes the functional requirements of the entity.

For this simple multiplexor example, the differences between a VHDL behavioral description and

VSPEC may not seem that significant. For a more telling example, consider the specification of a

sorting component. In VHDL, the simplest way to speicify a sorter is an entity with a behavioral

architecture describing its function. This behavioral architecture would be an ADA-like description

of a specific sorting algorithm such as bubble sort or quicksort. This forces the design of the

component to a specific implementation at a very early stage in the design process. In reality, this

behavioral architecture is a description of "how" the sorter should work, not "what" the sorter

should do. It biases the implementation towards a specific design (i.e. a bubble sort or quicksort)

and forces a designer to deal with unneccessary detail at a very early point in the design process.

On the other hand, a sorting component could be described in VSPEC like this:

ENTITY sorter IS
PORT (input : IN ARRAY OF INTEGER;

output : OUT ARRAY OF INTEGER);
REQUIRES true;
ENSURES permutation(output, input) AND

sorted(output);
INCLUDES "sort.re";

END sorter;

In this example, permutation is a function (defined in "sort.re") that returns true if output

contains all the same elements as input while sorted is the same function used in Section 3.1.

25

December 14, 1994 12

This code describes a sorting component as something that ensures input and output contain the

same elements and that output is in order. Thus, the specification above describes the functional

requirements of the sorter without describing an implementation of a sorting algorithm. In other

words, this definition describes "what" the sorter must do instead of defining "how" it should be

done, VHDL alone does not allow this type of description. The VSPEC ensures and requires clause

add this feature to VHDL.

3.3 State Clause

(state^clause) ::= STATE (vspec.variable-declarationJist) ;

The purpose of the state clause is to define a list of variables that store the state of an entity.

In most algebraic specification languages (such as Larch [7]), a computational unit is defined as a

transformation from inputs to outputs. This type of transformation is not adequate for specifying

systems with VSPEC. Unlike typical subprograms, an entity's local storage is not re-initialized for

each use of the entity. Buffers and registers retain their values from one use of the entity to the

next. The state clause provides a means to model this. The variables declared in the state clause

serve as the local storage for the entity. In addition, hardware designers very naturally think in

terms of the state of a device and the state clause allows them to extend this thought process to

the specification of the digital system.

The syntax for a VSPEC variable declaration list is:

(vspecvariable-declarationJist) ::= (vspecjvariable-declaration) {, (vspec-variable.declaration) }

(vspec.variable-declaration) ::= {identifierJist) : (subtype-indication)

An identifier list is a comma-separated list of identifiers while a subtype indication is the VHDL

construct used to declare the type of a variable. In most cases, this is just an identifier that names

26

December 14, 1994 13

the type of the variable(s) declared, but refer to the VHDL documentation for a more complete

description [10, 16].

3.4 Constrained By Clause

(constrained-by-dause) ::= CONSTRAINED BY (logical-expression) ;

While the ensures clause is used to describe the functional requirements placed on a system, the

constrained by clause is used to describe the performance requirements of the system. Consider

the affect of adding the following clause to the sorter example in Section 3.2:

CONSTRAINED BY
size <= 2 um * 5 um AND

, power <= 20 mV AND
input<->output <= 100 us;

With this additional clause, the VSPEC entity now supplies information about the area the entity

must be implemented in, the maximum power consumption of the entity and the pin to pin timing

for the entity. VHDL does not provide a convenient way to specify these types of performance con-

straints. The constrained by clause provides a standard method for specifying the non-functional

requirements of the system.

The logical expression used in the constrained by clause must be a conjunction of constraint

expressions. The syntax for these expressions is:

(constraint-expression) ::= (constraint-type) (relationaLop) (constraint-value)

where the relational operators are the standard VHDL operators <=, <, >=, >, = and /= (not

equal) and the constraint value is either a physical literal or a product of two physical literals (i.e.

10 urn * 40 urn). In VHDL, a physical literal is simply a number followed by a unit (10 mW, for

27

December 14,1994 14

example). Each constraint expression restricts the legal value of the constraint type to a given

range, for instance power < IV.

VSPEC currently recognizes five constraint types: area, heat dissipation, power consumption, clock

frequency and pin to pin timing. In a constraint expression, the first four of these constraint

types are referenced with an identifier. Respectively, these identifiers are area, heat, power and

clock_f requency. A slightly different notation is used to specify the final constraint type, pin to

pin timing. The syntax for this type of constraint is:

(timing-expression) ::= (input.pin) <-> (output-pin)

where input pin and output pin are identifiers that represent an input and an output port of the

entity. Thus, an expression such as input <—> output < 100 us states that a change in the data

at the input port is propogated to the output port in less than 100 microseconds.

As mentioned above, constraint values are either a physical literal or the product of two physical

literals. Area is the only constraint type where a constraint value is the product of two physical

literals. Area must be specified in this fashion with the two values representing the bounding box

that the entity must fit into. All other constraint types have values that are physical literals.

There are several predefined units that are used for constraint values in VSPEC. The base units of

these predefined units are meters for area, volts for power consumption, hertz for clock frequency

and seconds for pin to pin timing. In addition to these base units, each of these units can also

be expressed using the standard metric prefixes (i.e. area could be fm, urn, mm, cm, m or km).

VHDLalso allows the declaration of virtually any other physical type (see physical type definition in

a VHDL reference [10, 16]).

In addition to the five pre-defined constraints, VSPEC users can create their own constraint types.

At the present time, this has not been implemented in the VSPEC system, but this functionality is

a part of the overall plan for the language.

28

December 14, 1994 15

3.5 Modifies Clause

(modifies.clause) ::= MODIFIES (identifier-list) ;

The modifies clause is used to help build a list of signals and variables the entity will modify. The

entity is guaranteed to change only the signals in this modifies list. The value of all other signals in

the entity will be left unchanged. Since out mode port signals and all variables in the state clause

would serve no purpose if the entity did not change them, all out mode port signals and variables

in the state clause are automatically included in the modifies list. You may explicitly write them

in the identifier list in the modifies clause if you desire, but this is an unneccessary step. On the

other hand, global variables 2 and buffer/inout mode port signals may only be modified if they are

included in the modifies list. It is an error to place in mode port signals in the modifies list since

the definition of VHDL does not allow an entity to change the value of an input signal. Here is a

simple example to clarify the signals and variables that will and will not occur in the modifies list:

ENTITY modifies.example IS
PORT (A : IN integer;

B : OUT real;
C, D : BUFFER bit;
E, F : INOUT bit);

STATE G : integer;
MODIFIES C, E;

END modifies_example;

The list of signals/variables this entity will modify is C, E, B and G. C and E are included in this list

because they are explicitely stated in the modifies clause. B is included because it is an output

signal. All architectures of an entity must assign a value to all entity output signals. Thus, B

is automatically included in the modifies list. G is included in this list for a similar reason. The

2GIobal variables were added to the 1993 version of VHDL. Previous definitions of the language did not contain
global variables.

- 29

December 14, 1994 16

definition of VSPEC forces the entity to assign a value to all state variables so all state variables are

automatically included in the modifies list.

3.6 Includes Clause

(includes-dause) ::= INCLUDES (stringJiteraLlist) ;

The includes clause is used to include a REFINE program in a VSPEC specification. This REFINE

program defines the functions and types used in the specification and it helps map the VSPEC

specification to its formal representation in the REFINE object base. A VSPEC specification may

contain as many includes clauses as the user needs to describe the system. We have already seen

an example of the includes clause in the search entity described in Section 3.1:

ENTITY search IS
PORT (input : IN ARRAY OF INTEGER;

key : IN INTEGER;
output : OUT ARRAY OF INTEGER)

REQUIRES sorted(input);
INCLUDES "sort.re", "set.re";

END search;

In this example, the file "sort.re" contains the following REFINE definition of the sorted function:

function sorted (input-seq : seq(integer)) : boolean =
if (size (input-seq) = i) then

true
else

(input-seq(l) < input-seq(2)) and sorted (rest(input-seq))

This is a boolean function that returns true when the input sequence is in order from smallest to

largest. In formal logic, a boolean function is called a predicate. VSPEC users can define arbitrarily

many predicates that are used to describe the observable behaviors of the system being designed.

30

December 14, 1994 17

Each of these predicates can appear in the requires or ensures clauses to describe a functional

requirement of the system. All of the predicates that appear in these clauses must be defined in a

REFINE file that is listed in one of the includes clauses in the entity where it is used.

3.7 Based On Clause

(based-on-dause) ::= (vspecJype) BASED ON {refinesort)

The based on clause is used to map a data type used in VSPEC to its definition in REFINE. This

definition in REFINE is called a sort. In the syntax above, vspec type is an identifier that refers to

the data type used in VSPEC and refine sort is an identifier that represents the corresponding sort

in REFINE.

The VSPEC system provides a built in mapping to REFINE for all predefined types in VHDL. This is

accomplished by automatically including based on clauses for these predefined types in all VSPEC

entities. The VHDL types integer, real, boolean, character and string map to their corre-

sponding types in REFINE. The VHDL types severity-level, bit and bit_vector map to the

following definitions in REFINE:

type severity_level = {'note, 'warning, 'error, 'failure}
type bit = {0, 1}
type bit.vector = seq(bit)

This means that the VSPEC systems adds based on clauses such as integer BASED ON integer,

character BASED ON char and bit-vector BASED ON bit.vector to all VSPEC entities. In addi-

tion, VSPEC automatically includes a REFINE file that contains the three types above. With these

clauses included in all VSPEC entities, the predefined types in VHDL may be used in any VSPEC

specification.

31:

December 14, 1994 18

4 Formal Representation of VSPEC

All VSPEC definitions can be transformed into a formal definition. This formal definition is based

on an extension of domain theories defined in the CYPRESS [19] and KIDS [21, 20] systems, CYPRESS

and KIDS are software synthesis systems that can be used to synthesize an efficient executable

program from an algebraic specification. A domain theory is used to describe the problem to be

synthesized. It consists of a tuple of the domain (D), range (R), input pre-condition (I(x : £>))

and output post-condition (0(x : D,z : R)) commonly referred to as a DRIO model. In VSPEC,

the DRIO model can be constructed using the following rules:

D = d\ x d2 x • • • * dn where each dk is the sort (defined by the based on clause) representing the

type associated with an in, inout, or buffer port or a state variable

R = n X T2 x ... x rm where each rj is the sort representing the type associated with an element

in the modifies list (see Section 3.5)

I(x : D) = Iv(x : D) where Iv(x : D) is the logical sentence denned by the requires clause

0(x : D,z : R) = Ov(x : D,z : R) where Ov(x : D,z : R) is the logical sentence defined by the

ensures clause

VSPEC is somewhat different from the specification languages that are normally used with CYPRESS

and KIDS. A specification language for digital systems must provide a means for describing the

performance constraints of the system. One way to do this would be to include these types of

constraints in the output post-condition for the system. However, this is not the approach taken

with VSPEC. Performance constraints have nothing to do with the function of the system so we feel

it is appropriate to separate them from the functional requirements defined in the post-condition

of the system (i.e. the ensures clause).

32

December 14, 1994 19

This is one reason the constrained by clause is included in VSPEC. The system's performance

constraints are specified in the constrained by clause while the ensures clause describes the

functional requirements of the system. The performance constraints can be represented in the

formal model of VSPEC by extending the DRIO to a DRIOC model:

C{c\ : C\,..., cn : C„) = Cv(c\ : Ci,..., cn : Cn) where Ck is a constraint variable such as heat or

area, Ck is a sort associated with a constraint variable and Cv is the logical expression defined

in the constrained by clause

The definitions in the DÄ/OCdescribe the system as a transformation mapping the current state

and inputs into the next state and outputs such that when the input pre-condition is satisfied the

output post-condition and constraints are also satisfied. Formally, this can written as:

Vz :£./(*) ^0(x,/(z)) A C(Cl,...,cn) (1)

where f(x) is the transformation performed by the system. This axiom shows the relationship

between the design, f(x), and its requirements. In VSPEC, I{x) is derived from the requires

clause, 0(x,z) from the ensures clause and C(ci,. ..,cn) from the constrained by clause. In

VSPEC f(x) will be defined using behavioral VHDL. Finding f(x) given J, 0 and C is the synthesis

problem addressed by COMET. Proving the equation above is true for a given /(x), I, 0 and C

verifies that f(x) is an implementation of the VSPEC specification.

33

December 14, 1994 20

5 Extended Example: 16-bit Move Machine

5.1 Problem Description

The Move Machine is a simple microprocessor whose instructions move data between CPU registers

and main memory [18]. The computational units of the machine are assumed to be memory mapped.

With this assumption, arithmetic and logical computations are performed as side effects of moving

data to and from designated memory locations.

5.1.1 Physical Configuration

The physical storage components of the Move Machine are a main memory array and a set of

registers. The registers consist of an instruction pointer, an instruction register, and an array of

general purpose registers.

In this example, a 16-bit Move Machine is specified. The configuration used has 16 general purpose

registers, each 16 bits long. The main memory size is 512 bytes (256 16-bit values), requiring 8-bit

addressing. The instruction pointer is 8 bits and the instruction register is 16 bits.

5.1.2 Instruction Format

The instructions of the 16-bit Move Machine have four fields:

• A two bit op-code. The four operations that the Move Machine has are: load, store, jump,

and halt.

• A two bit addressing mode which determines how the effective address is specified in the

instruction. The four addressing modes are: absolute, immediate, indirect, relative.

• A four bit register identification to specify which register is to take part in the operation.

34

December 14, 1994 21

• An eight bit effective address which, in conjunction with the addressing mode, determines

which memory location takes part in the instruction.

5.1.3 Processor Operation

The I/O interface to the Move Machine consists of a start signal, a finished signal and a clear signal.

When the start signal is received, the processing cycle begins. When the machine halts (executes

a halt instruction), the finished signal is set. The clear signal resets the machine and prepares it

to receive the start signal.

The Move Machine has a three phase processing cycle. In the first phase, the instruction referenced

by the instruction pointer is fetched from memory. In the second phase, the effective address is

calculated according to the specified addressing mode and the instruction pointer is incremented

to reference the next instruction. In the third phase, the fetched instruction is executed.

5,2 Specification of the Move Machine

The first step in specifying the behavior of the Move Machine is to define abstract data types

in REFINE. These types and there associated operations will provide the vocabulary necessary

to describe the behavior of the Move Machine. Once this foundation is laid, defining the VSPEC

interface specification can begin. First, the input, output, and state variables are specified. Then

the desired behavior is described using the appropriate VSPEC clauses.

5.2.1 Abstract Types and Operations

Abstract data types and operations are specified using the REFINE language. REFINE supports

a host of set theoretic data types, such as sets, sequences, tuples, and maps. Sets and sequences

represent unordered and ordered collections of objects, respectively. Tuples are an ordered collection

35

December 14, 1994 22

of related data, similar to a VHDL record. Maps represent a functional relation between two types.

Formally, they are a set of 2-tuples such that M(x) = y means that (x,y) € M. Some additional

REFINE constructs will be introduced as they are used in the example. REFINE has a complete

array of operations for the predefined data types. For a more complete explanation of REFINE

types and operations, see the REFINE User's Manual [17].

Figure 3 shows the REFINE specification of the Move Machine data types and operations. The

first section in Figure 3 shows the predefined VHDL types available for use within the REFINE

specification. These are shown for reference, to make the example self-contained. The predefined

VHDL types are shown in all caps whenever they are used. The next section in Figure 3 is a group

of constant declarations that define the hardware configuration of the Move Machine.

The next group of declarations are the abstract data types. First, the Word type is introduced as

a set of BIT-VECTOR. Next, the Address type is defined as an integer subrange. Variables of type

Address will have an integer value between 0 and MM_Size-l. The type Memory .Array is defined as

a map from Addresses to Words. This means that for a Memory_Array, M, and an Address, x, the

Word at memory location x is simply M (x). Notice that the size of a Memory-Array is restricted

by the upper bound of the Address integer range. Register-Array and Register_Id are specified

in the same manner as Memory-Array and Address.

The abstract type Operation is defined to describe the four possible Move Machine operations.

This is done using a symbol. Symbols are a REFINE type used to represent an abstract value. They

are not strings or sequences of characters. Each symbol literal is a unique atomic value. The Move

Machine's four addressing modes are similarly represented by the Add_Mode type.

The Instruction type is a 4-tuple representing the four fields of the instruction. The tuple values

are accessed in the same manner as fields of a record. The op.code value for an Instruction, i,

is simply i.op_code.

The last data type specified is Proc_State. This type is used to represent the abstract states of the

36

December 14, 1994 23

'/,— REFINE move_mc_types.re — abstract type lor the Move Machine.
*/, The following lines are needed in all Refine programs
!! in-package("RU")
!! in-grammar('user)

'/, predefined VHDL types and operations
'/, type BIT = boolean
*/. type BIT.VECTOR = seq(BIT)
'/. function bits_to_int(b:BIT_VECTOR) : INTEGER

'/. Move Machine constant declarations
constant MM_Size : INTEGER = 256
constant Register_Array_Size : INTEGER = 16
constant Word_Size: INTEGER = 16

'/, Move Machine type declarations

type Word = BIT_VECTOR
type Address = {0. .MM_Size-l} '/. integer range
type Memory_Array = map(Address.Word)
type Registered = {0. .Register_Array_Size-l} */. integer range
type Register_Array = map(Register_Id,Word)
type Operation = SYMBOL
type Add.Mode = SYMBOL
type Instruction =

tuple(op_code : Operation, addr_mode : Add_Mode,
reg_id : Register_Id, eff_addr : Address)

type Proc_State = SYMBOL

V, Operations over the Move Machine types
function Word_to_Instr(data : Word) : Instruction =

< Decode_Op(subseq(data,0,l)),
Decode_AM(subseq(data,2,3)),
bits_to_int(subseq(data,4,7)),
bits_to_int(subseq(data,8,15)) >

function Decode_Op(data : seq(BIT)) : Operation
computed-using data = [false,false] => Decode_Op(data) = 'load,

data = [false,true] => Decode_Op(data) = 'store,
data = [true,false] => Decode_0p(data) = 'jump,
data = [true,true] => Decode_0p(data) = 'halt

function Decode_AM(data : seq(BIT)) : Add_Mode
computed-using data = [false,false] => Decode_AM(data) = 'absolute,

data = [false,true] => Decode_AM(data) = 'immediate,
data = [true,false] => Decode_AM(data) = 'indirect,
data = [true,true] => Decode_AM(data) = 'relative

Figure 3: Move Machine data types and operations.

ZI

December 14, 1994 24

Move Machine's operation. The three processing phases, fetch, decode, and execute, are represented

along with start and stop states. The allowable actions of the Move Machine's behavior will be

expressed as transitions between these five processor states.

The last section in Figure 3 is the specification of Word_to_Instr, an operation that converts

between Words and Instructions. This conversion will be necessary because instructions are

stored in memory as words. Notice that syntax of REFINE permits simply equating the function

with a tuple construct. The values of each of the tuple fields are themselves function calls. The

REFINE subseq operation is used to extract a smaller sequence from an existing sequence. This

operation can be used with the type Word, because it is a BIT-VECTOR which is a sequence of BITS.

The functions Decode_0p and Decode_AM are used to precisely define the operation and addressing

mode deciding scheme.

5.2.2 VSPEC Interface Specification

This section contains a detailed description of the interface specification for the Move Machine.

The entire specification is shown in Figure 4. We will describe each section of this specification

separately, starting with the port declaration. This is where the entity movejnc is created and its

I/O ports are declared in standard VHDL syntax. The start and clear signals are denned as inputs

and the finished signal is defined as an output. The Move Machine port declaration is:

entity move.mc is
port (Start: in BIT; — Begin processing

Clear: in BIT; — Restart processing
Finished: out BIT); ~ Processing completed

The VSPEC includes clause follows the port declaration:

includes "move_mc_types.re";

38

December 14, 1994 25

«ntity Bove_mc is

port (Start: in BIT;

Clear: in BIT;

Finished: out BIT);

Begin processing

Restart processing

Processing completed

includes "aove_mc_types.re";

state

phase: Proc_State,

Memory : Menory_Array,

IP : Address,

IR : Instruction,

BGST : Register.Array,

EA : Address,

Abstract Processor State

Main Memory

Instruction Pointer

Instruction Register

General Purpose Registers

Effective Address

ensures

phase = start implies (Start = '1' implies phase'post = fetch)

and (Start = '0' implies phase'post = start)

and IP'post = 0

and Memory'post = Memory and RGST'post = RGST

and
phase - fetch implies IR'post = Word_to_Instr(Memory(IP))

and phase'post = decode and Memory'post = Memory

and RGST'post = RGST and IP'post = IP

and
phase = decode implies phase'post = execute

and (IR.addrjnode = absolute implies

EA'post =» IR.eff.addr and IP'post = IP + i)

and (IR.addr.mode = immediate implies

EA'post = IP + 1 and IP'post = IP + 2)
and (IR.addr_mode ■» indirect implies

EA'post = Word_to_Instr(Meaory(IR.eff_addr)).eff_addr

and IP'post => IP + 1)

and (IR.addr_mode = relative implies

EA'post = IP + IR.eff_addr and IP'post = IP + 1)
and Memory'post =■ Memory and RGST'post = RGST and IR'post = IR

and

phase = execute implies

(IR.operation = load implies RGST(IR.reg_id)'post = Memory(EA)

and forall(x:Register_Id)

(x /= IR.reg_id implies RGST(x)'post = RGST(x))

and (IR.operation /» load implies RGST'post = RGST)

and (IR.operation = store implies Memory(EA)'post = RGST(IR.reg_id))

and foralKx:Address)(x /= EA implies Memory(x)'post = Memory(x))

and (IR.operation /= store implies Memory'post = Memory)

and (IR.operation = jump implies IP'post = EA)

and (IR.operation /= jump implies IP'post = IP)

and (IR.operation ■ halt implies phase'post = stop)
and (IR.operation /= halt implies phase'post = fetch))

and
phase » stop implies Finished'post = '1'

and (Clear - '0' implies phase'post = stop)

and (Clear = '1' implies phase'post = start)
and Memory'post =■ Memory and RGST'post = RGST

and

phase /= stop implies Finished'post = '0';

end move.mc;

Figure 4: VSPEC interface specification for the Move Machine

a

December 14, 1994 26

The includes clause states that this specification will use abstract types and operations defined

in the file move_mc.types.ra, which was described in the previous section.

The behavior of the Move Machine is specified by describing the allowable transactions between

processor states [14]. To do this, we must first definine the information that determines the processor

state. The Move Machine has a three phase processing cycle which can be viewed as processor states.

The addition of a start and a stop state defines a set of states which uniquely describes the status of

the Move Machine at any moment in time. The abstract type Proc_State was defined specifically

for this purpose. Therefore, the state clause contains the variable phase of type Proc_State to

model the processor state:

state
phase: Proc_State, — Abstract Processor State
Memory : Memory_Array, — Main Memory
IP : Address, — Instruction Pointer
IR : Instruction, — Instruction Register
RGST : Register.Array, — General Purpose Registers
EA : Address, — Effective Address

Naturally, the values of the registers and main memory are of interest when observing the behavior

of the processor. Variables of these type are declared in the state clause to model these physical

structures. In addition, any internal signals that are used to communicate between processor states

must be declared as state variables. The effective address is calculated in the decode phase but it

is used in the execute phase. Therefore, the variable EA of type Address is declared to store the

effective address between states.

Given a set of input and state variables, the VSPEC ensures clause can be used to specifiy the

allowable changes to the output and state variables. In this way, the behavior of the Move Machine

is defined. The Move Machine ensures clause is structured according to the value of the phase

variable. This clarifies the specification of the state transactions that are allowed during each phase

40

December 14, 1994 27

of processor execution. The allowable transactions for each phase are then conjuncted together to

provide a complete behavioral specification.

The permissible next state values must be explicitly constrained for each state variable. If a state

variable is not constrained, then presumably it is allowed to take on any value of the associated

type. It is not assumed that unconstrained variables remain unchanged. Constraining a variable's

behavior is accomplished using the VSPEC implies operator to define the next state values that

are possible during each processor phase. In this example, the next state values are determinant,

but this is not a necessary condition. Non-determinism can be modeled by disjuncting allowable

next state values.

The first part of the ensures clause specifies what transactions are allowed during the start phase.

While in the start phase, the processor is simply waiting for the start signal to begin processing. If

the processor does not receive the start signal, it stays in the start phase. This constraint on the

next state value of the phase variable (phase'post) is specified by the first two conjuncts implied

by the start phase. Note that the notation <uan'aWe>'post, where <variable> is the identfier for

the variable, is used to refer to the value of the variable after the transaction occurs. Here is the

part of the ensures clause which describes the start phase:

phase = start implies (Start = '1' implies phase'post = fetch)
and (Start = '0' implies phase'post = start)
and IP'post = 0
and Memory'post = Memory and RGST'post = RGST

The conjunct, IP 'post = 0, states that the first instruction will be retrieved from memory location

0. The final two conjuncts specify that the main memory and register values must remain unchanged

during this processing phase. Without these constraints, the specification would be satisfied by an

implementation where the memory and registers values arbitrarily change during this state, which

is not the desired behavior. Notice that the state variable EA is not constrained during this phase.

m

December 14, 1994 28

At this point, the EA variable does not contain any information which will effect the future state

of the machine. Therefore, the specification need not be constrained to retain the value of this

variable.

The Move Machine behavior during the fetch phase is described by:

phase = fetch implies IR'post = Word_to_Instr(Memory(IP))
and phase'post = decode and Memory'post = Memory
and RGST'post = RGST and IP'post = IP

During the fetch phase, the instruction pointer is updated to ontain the interpretation of the word at

memory location IP. Here, the interpretation is performed by the Word_to_Instruction function

defined in the previous section. The next processing phase is specified to be decode, while the

memory and remaining register values remain unchanged.

The state changes which occur during the decode phase hinge on the addressing mode. Therefore,

the majority of the specification of the decode phase is structured around the value of IR. addr_mode:

phase = decode implies phase'post = execute
and (IR.addr.mode = absolute implies

EA'post = IR.eff.addr and IP'post = IP + 1)
and (IR.addr_mode = immediate implies

EA'post = IP + 1 and IP'post = IP + 2)
and (IR.addr_mode = indirect implies

EA'post = Word_to_Instr(Memory(IR.eff_addr)).eff.addr
and IP'post = IP + i)

and (IR.addr.mode = relative implies
EA'post = IP + IR.eff.addr and IP'post = IP + 1)

and Memory'post = Memory and RGST'post = RGST and IR'post = IR

The effective address, EA and instruction pointer, IP, are updated according to the current ad-

dressing mode. The next phase is specified to be the execute phase. The main memory, the CPU

registers and the instruction register are unchanged.

42

December 14, 1994 29

The Move Machine behavior during the execution phase depends upon the fetched operation. This

part of the specification is determined by the Move Machine operations:

phase = execute implies
(IR.operation = load implies RGST(IR.reg_id)'post = Memory(EA)

and foralKx: Registered)
(x /= IR.reg.id implies RGST(x)'post = RGST(x))

and (IR.operation /= load implies RGST'post = RGST)
and (IR.operation = store implies Memory(EA)'post = RGST(IR.reg_id))

and forall(x:Address)(x /= EA implies Memory(x)'post = Memory(x))
and (IR.operation /= store implies Memory'post = Memory)
and (IR.operation = jump implies IP'post = EA)
and (IR.operation /= jump implies IP'post = IP)
and (IR.operation = halt implies phase'post = stop)
and (IR.operation /= halt implies phase'post = fetch))

For a load operation, the register identified by the current instruction is assigned the value of the

memory location referenced by the effective address. This is easily specified by: RGST(IR.reg-id) 'post

= Memory (EA). However, it is also necessary to specify that the remaining registers do not change.

This is the purpose of the second conjunct implied by the load operation. Using the VSPEC f orall

construct, it states that every register that is not involved in the load operation retains its value.

When the instruction does not specify a load operation, the values of the register array do not

change.

Similarly, for a store operation, the specification states that the specified memory location changes

while the rest remain unchanged. The jump operation only effects the value of the instruction

pointer. A halt operation causes the next phase to be the stop phase. Any other operation results

in the processing returning to the fetch phase.

During the stop phase, the processor sets the finished signal and monitors the clear signal. The

stop phase is specified by:

43

December 14,1994 30

phase = stop implies Finished'post = '1'
and (Clear = '0' implies phase'post = stop)
and (Clear = '1' implies phase'post = start)
and Memory'post = Memory and RGST'post = RGST

and
phase /= stop implies Finished'post = '0';

The next phase is determined by the clear signal. This part of the specification also constrains the

finished signal to be low during every other phase.

The full behavior of the Move Machine is modeled by conjuncting the specifications for the indi-

vidual phases. Figure 4 shows the entire specification for the Move Machine.

6 Related Work

VSPEC uses an axiomatic specification technique based on the approach developed for the Larch [7]

family of specification langauges. On the surface, VSPEC is a prototype Larch interface language

for VHDL. Thus, many of its constructs can also be found in other Larch interface languages, most

specifically LM3 [12], an interface language for Modula-3. Currently, VSPEC is not a true interface

language as its semantics are defined using REFINE rather than the Larch Shared Language (LSL).

However, the general concept of a language specific axiomatic interface language in combination

with a means for writing auxiliary specification is prominent.

Odyssey Research Associates (ORA) is developing a Larch interface language for VHDL [11]. This

language differs from VSPEC because it is targeted for formal analysis of the system rather than

for synthesis. ORA. is attempting to generate a formal semantics for VHDL using LSL for prov-

ing correctness. This approach is adopted from the Ada work previously done in the Penelope

project [4]. In ORA's interface language, time is the only non-functional constraint directly rep-

resented. Rather than placing constraints on pin-to-pin timing, an absolute time based termporal

logic is used to specify the an entity's function. One can specify that a predicate P(x) must be true

44

December 14, 1994 31

at time t using the notation "P(x)@t". Thus, a system's timing constraints are intermingled in the

definition of the function of the system. The VSPEC notation specifies time intervals as constraints

independent of system function. In principle, separation of concerns is a design goal for any spec-

ification language. In practice, including temporal aspects in the functional specification requires

use of theorem provers capable of temporal reasoning. Currently, there are few such production

quality provers. In VSPEC, information needed for constraint verification is included, but one may

choose characteristics for verification.

VAL [1] is another attempt to annotate VHDL. VAL (VHDL Annotation Language is based on

similar work done with Anna for Ada programs [15]. VAL differs from VSPEC because it is an

annotation of a specific VHDL design rather than a representation of the requirements for a system

not yet designed. VSPEC clauses may access only ports defined by the entity and variables

defined locally in the specification. VAL annotations exist throughout the VHDL specification

and formally document its behavior. Any local variable may be referenced in a VAL annotation.

Specific aspects of both the structural and behavioral implementation are documented in the VAL

annotation. VAL's intent is to document a design for verification where VSPEC'S intent is to define

requirements for a system.

7 Current Status and Future Directions

Current VSPEC research involves pursuing domain specific support for prototype synthesis. The

role of VSPEC in the COMET system is as a requirements specification language and as input to

synthesis tools. Thus, we are working to develop techniques to transform VSPEC into behavioral

and structural VHDL. An important related technology transfer issue is developing a handbook of

reusable specifications. In the Larch tradition, a handbook is simply a collection of reusable theories

defined in the shared language. Handbook theories represent commonly used structures, algorithms

and characteristics as well as domain specific information. For VHDL theories representing standard

45

December 14, 1994 32

VHDL types, low level logic functions, signal attributes and conversion routines are some libraries

currently being implemented. Theories for pin-to-pin timing, heat dissipation, power consumption,

area and clock speed have been implemented to support constraint checking during the design

process.

We are beginning an effort to make VSPEC a true Larch interface language. Specifically, denning each

of its constructs using LSL and developing tools for manipulating the specifications. Of particular

interest is the representation of parallel components. Each entity structure exists asynchronously

in parallel with other entities in the same design, representing such parallelism in VSPEC is a

current area of research.

A prototype VSPEC parser has been developed and will be used to drive synthesis tools and the

translation from VSPEC to LSL. The parser is developed using the SOFTWARE REFINERY'S DIALECT

tool and parses VHDL93 with VSPEC extensions into an abstract syntax tree. This data structure

serves as the basis for interfacing VSPEC with other tools.

8 Acknowledgments

Support for this work was provided in part by the Advanced Research Projects Agency and moni-

tored by Wright Labs under the RASSP Technology Program, contract number F33615-93-C-1316.

The authors wish to thank Wright Labs and ARPA for their continuing support and direction.

References

[1] L. Augustin, D. Luckham, B. Gennart, Y. Huh, and A. Stanculescu. Hardware Design and
Simulation in VAL/VHDL. Kluwer Academic Publishers, Boston, MA, 1991.

[2] Yoonsik Cheon and Gary T. Leavens. A Quick Overview of Larch/C++. Journal of Object-
Oriented Programming, 7(6):39-49, October 1994.

46

December 14, 1994 33

[3] Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging Larch Shared Lan-
guage Specifications. Technical Report 60, Digital Equipment Corporation Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301, July 1990.

[4] David Guaspari. Penelope, an Ada Verification System. In Proceedings of Tri-Ada '89, pages
216-224, Pittsburgh, PA, October 1989.

[5] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal Verification of Ada Programs.
IEEE Transactions on Software Engineering, 16(9):1058—1075, September 1990.

[6] John V. Guttag and James J. Horning. Introduction to LCL, A Larch/C Interface Language.
Technical Report 74, Digital Equipment Corporation Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301, July 1991.

[7] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, New York, NY, 1993.

[8] John V. Guttag, James J. Horning, and Andres Modet. Report on the Larch Shared Language:
Version 2.3. Technical Report 58, Digital Equipment Corporation Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, April 19990.

[9] C.A.R. Hoare. Algebra and Models. Proceedings of the First ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 18(5):l-8, December 1993.

10] Institute of Electrical and Electronics Engineers, Inc., 345 East 47th St., New York, NY 10017.
VHDL Language Reference Manual, 1994.

11] D. Jamsek and M. Bickford. Formal Verification of VHDL Models. Technical Report RL-TR-
94-3, Rome Laboratory, Griffiss Air Force Base, NY, March 1994.

12] Kevin D. Jones. LM3: A Larch Interface Language for Modula-3, A Definition and Introduction
Version 1.0. Technical Report 72, Digital Equipment Corporation Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, June 1991.

13] Knowledge Based Software Engineering Laboratory, University of Cincinnati. VSPEC Lan-
guage Reference Manual, 1994. In Preparation.

14] Leslie Lamport. A Simple Approach to Specifying Concurrent Systems. Communications of
the ACM, 32(l):32-45, January 1989.

15] D. Luckham and F. von Henke. An Overview of Anna, a Specification Language for Ada.
IEEE Software, 2(2):9-22, March 1985.

16] Douglas L. Perry. VHDL. McGraw-Hill, Inc., New York, NY, 1991.

17] Reasoning Systems Inc., Palo Alto, CA. Refine User's Guide, Version 3.0, May 1990.

18] Jayanta Roy, Nand Kumar, Rajiv Dutta, and Ranga Vemuri. DSS: A Distributed High-Level
Synthesis System. IEEE Design&Test of Computers, pages 18-32, June 1992.

H7

December 14, 1994 34

[19] D. Smith.. Top-down Synthesis of Divide-and-Conquer Algorithms. Artificial Intelligence,
27(l):43-96, Sept. 1985.

[20] D. Smith. Algorithm Theories and Design Tactics. Science of Computer Programming, 14:305-
321, 1990.

[21] D. Smith. KIDS: A Semiautomatic Program Development System. IEEE Transactions on
Software Engineering, 16(9):1024-1043, Sept. 1990.

[22] R. Vemuri, H. Carter, and P. Alexander. Board and MCM Level Synthesis for Embedded
Systems: The COMET Cosynthesis Environment. In Proceedings of the First Annual RASSP
Conference, pages 124-133, Arlington, VA, August 15-18 1994.

H8

APPENDIX C:
Pipelined Scheduling of Hardware-Software Codesigns

Karam S. Chatha and Ranga Vemuri
Department of ECECS
University of Cincinnati

Cincinnati, Ohio 45221-0030
Email: ranga.vemuri@uc.edu

Abstract
This paper discusses a scheduling technique for

pipelined hardware-software codesigns. The technique
uses scheduling and retiming to optimize the perfor-
mance of a given codesign. The paper presents heuris-
tics for scheduling and retiming which aim to optimize
the throughput and memory requirements of a given
codesign. The effectiveness of the technique is demon-
strated by experimentation.

1 Introduction
Hardware-Software codesigns are characterized by

strict performance constraints. The codesign process
partitions the system specification in to interacting
hardware (HW) and software (SW) tasks which ex-
hibit the desired behavior and satisfy the performance
requirements. In a typical codesign flow the HW-SW
partitioner and the scheduler execute in an iterative
fashion till a constraint satisfying design is obtained.
Many digital signal processing (DSP) algorithms are
loop oriented, which makes them suitable for pipelined
codesign implementation. In this paper we present a
technique which optimizes the throughput and mem-
ory requirements of pipelined codesigns by scheduling
and retiming.

The system specification is captured in an interme-
diate graph format called the Data Dependency Graph
(DDG). The vertices of the graph represent the tasks
and the edges represent the data dependencies among
the various tasks. The granularity of the tasks is deter-
mined by the user. The execution times of the tasks on
the SW processor and in HW are obtained by profiling
and HW performance estimation respectively [5]; and
are stored in the graph representation. The edges con-

"This work was partially supported by the ARPA RASSP
program and monitored by the Wright Lab, US-AF under con-
tract number F33615-93-C-1316 and ARPA HPCC program
monitored by the FBI under contract number J-FDI-93-116

tain information about the number of variables across
a dependence. The DDG representation will be dis-
cussed in detail in Section 3.

The codesign architecture consists of a single gen-
eral purpose SW processor, a single application spe-
cific integrated chip (ASIC) and a shared memory
(Figure 1). The SW processor and ASIC are connected
to the shared memory through the system bus. The
general purpose processor and the ASIC themselves
are non-pipelined with respect to task execution, that
is a new task cannot begin execution before the pre-
vious one has finished. Communication between tasks
bound to different resources (that is from SW to HW
or HW to SW) takes place through the shared mem-
ory. Also data transfers between two tasks bound to
ASIC takes place through the shared memory. The
shared memory is exclusive read exclusive write and
therefore no two tasks can either read or write at the
same time.

FOR SW - SW
COMMUNICATION

SHARED
MEMORY

/ § SYSTEM B I
GENERAL
PURPOSE

MICRO
PROCESSOR

s t
ASIC SOFTWARE

MEMORY
..*,.,„ i^ntiWI.""
~«i.*.:- .^*^«...^ ,~.,r*

Figure 1: Codesign Architecture

The throughput of loop-oriented codesigns can be
maximized by obtaining a pipelined implementation.
The drawback of pipelining is that it increases the
memory requirement of the design. Consider the DDG
shown in Figure 2. It consists of three tasks shown
as bubbles in the figure. The binding and execution

49

DATA DEPENDENCY GRAPH

sw, lOOt-units

hw, 150 t-units sw, 100 t-units

Memory Read Time = 1 t-units per data Item
Memory Write Time = 1 t-units per data item

Figure 2: DDG Example

HW

SW

Non-Pipeline Implementation

Task 1 „
Iter. No. 0 h»

Task 2
Iter. No. 0

Task 3
Iter. No. 0

374 t-units
12 memory units

Pipeline Implementation

I

Task 1
Iter. No. 0|w

Task 2
rbter. No. 0

Task 1
Iter. No. 1

Task 3
rkter. No. 0

Task 2
Iter. No. 1

Task 3
Iter. No. 1

Prologue j Steady State

I 269NÜnits
17 memory units

Epilogue

times of the tasks axe shown beside each bubble. The
data dependencies are shown as directed edges and the
data items transferred by each dependency are writ-
ten next to the edges. The memory read and write
times are also shown in the figure. We assume that
the DDG is executed a number of times inside a loop.
The non-pipeline and pipeline implementations of the
design are shown in Figure 3. The rectangles in Figure
3 represent the execution of various tasks. Each rect-
angle contains the task number and iteration number
of the loop to which it belongs. The small rectangles
with "r" and "w" represent memory read and write
respectively. We assume that a task while executing
needs memory space for both its read set and write
set. The read (write) set of a task is the set of data
items read (written) by the task. As can be seen from
the figure the non-pipeline implementation takes 374
t-units to complete one iteration of the loop and it re-
quires 12 memory units. The pipeline implementation
overlaps the execution of tasks belonging to different
iterations of the loop. When fully loaded the steady
state completes one iteration in 269 t-units, a definite
improvement on the previous design. But it requires
17 memory units for its execution.

The paper presents a technique for optimizing the
performance of pipelined codesign. The technique uses
a list based scheduler [1] and retiming transformations
[2] to obtain a pipelined codesign. The paper presents
heuristics for both scheduling and retiming which try
to maximize the throughput of the design while trying
to minimize the memory requirements.

The paper is organized as follows. In Section 2 we
discuss previous work, in Section 3 we describe the
DDG representation, Section 4 presents the pipeline
scheduling technique, the experimental results are in
Section 5 and finally Section 6 concludes the paper.

Figure 3: Non-pipeline and Pipeline Implementation

2 Previous Work
Based on their application area existing codesign

methodologies can be broadly classified in to two cate-
gories. Category one would include methodologies ori-
ented towards real time reactive systems [7] [8] [11] [13].
Scheduling in reactive systems is done to ensure that
time constraints and data dependencies between dif-
ferent processes are satisfied [12]. Category two would
contain methodologies that are meant for data pro-
cessing applications [10]. Design methodologies for
such applications use scheduling to maximize the
throughput of a given codesign partition. Our code-
sign flow would fall into category two. In this paper we
present a scheduling heuristic for optimizing through-
put and memory requirements of a design. Pipelining
is an effective way for maximizing the throughput of
a loop oriented design. Other research [9] has used
pipelining for mixed applications which include both
control constructs and data processing tasks. We use
retiming [2] to generate pipeline designs. The for-
malism for the problem description and the general
technique is described in [3] and we use the same in
our paper. Retiming heuristics in [3] aim at obtaining
pipelined implementations with optimum throughput.
In this paper we present a scheduler interacting with
a retimer to optimize both throughput and memory
requirements of pipelined codesign applications.

3 Data Dependency Graph
The input specification is captured by an intermedi-

ate graph called the Data Dependency Graph (DDG).
It represents the tasks by vertices and the data de-
pendencies between tasks by directed edges. The ver-
tices have information about the task binding (HW or
SW), HW execution time and SW execution time. The

50

edges have information about the number of variables
in a dependence. Since we are interested in pipelining
the design, we associate with each vertex an iteration
index (A) and with each edge a dependency distance
(<5) [3]. The iteration index X(u), of a task u indicates
that at the ith iteration of the steady state, instance
of task u belonging to the (i + X(u)) iteration of the
loop is executed. For example consider the pipelined
design in Figure 3. In the first iteration of the steady
state, instance of task 1 belonging to the second itera-
tion of the loop is executed, hence X(taskl) = 1. The
dependence distance of an edge e, 6(e) indicates the
number of iterations of the steady state traversed by
that edge. In the pipelined implementation in Figure
3, the data produced by task 1 at the ith iteration of
the steady state is consumed by task 2 at the (i + l)th

iteration of the steady state. Hence the dependence
distance of edge (1,2) is 6(1,2) = 1. We now formalize
the DDG representation as follows:
A DDG is a 4-tuple DDG = G(V,E,X,8), where:

• V is the set of vertices. Each vertex u € V rep-
resents a task. For each task u € V we have the
following information available to us :

- Ubind '■ The binding of the task, that is
whether its going to be implemented in HW
orSW.

- usw : The SW runtime of the task for a
particular input data on the general purpose
processor.

- Uhw ■ The HW runtime of the task if it were
to be implemented as an ASIC for the same
input data.

• E is the set of directed edges. Each e = (u, v) £ E
represents a data dependence between tasks u and
v. Every edge has information about the number
of variables (evar) represented by the dependence.

• A and 5 are two mappings, A : V -»• IV and
6 : E -> IV, representing the iteration index (X)
and the number of iterations traversed by the de-
pendence (S). IN is the set of natural numbers.

Initially, Vu € V, X(u) = 0. Notice that the repre-
sentation has no control flow constructs; it is strictly
data flow. Now we explain and formalize terms and
expressions that we will use in the rest of the paper.

The latency of a task u, Lu, is the total execution
time of the task. It is the sum of the task's read time,
execution time on the particular resource that its been
bound to and write time. The read (write) time of a
task is the product of the number of variables read

(written) by the task and the memory read (write)
time. Since we have only two resources, the execution
time for a task on a resource is usw (if uund = sw) or
Uhw (if Ubind = hw).

For a particular pipeline implementation, the ini-
tiation interval II, is the time taken for one itera-
tion of the steady state. For example in Figure 3,
the pipelined implementation has II = 269 t-units.
Given a DDG and an architecture its possible to es-
tablish a lower bound on the initiation interval. This
is called the minimum initiation interval, MIL The
MI7 is limited by two factors. Firstly the archi-
tecture resources limit the MIL This is called the
resource constrained Mil, ResMII. For example
the DDG in Figure 2 requires at least 212 t-units
to execute tasks 1 and 3 which are bound to SW.
The SW resource constrained Mil, ResMIIsw is
given by the sum of latencies of all tasks bound to
SW implementation. Similarly, HW resource con-
strained Mil, ResMIIffw is the sum of latencies of
all tasks bound to HW implementation. ResMII for
the DDG is then the maximum of the two, that is
ResMII = max(ResMIIsw,ResMIlHw) Secondly,
recurrences or cycles in the DDG also limit MIL This
is called the recurrence constrained Mil, RecMII.
For example consider the DDG example shown in Fig-
ure 2. Let us assume that we add an extra dependency
e = (2,1) with 6(2,1) = 1 to the DDG. In such a case
the pipelined implementation in Figure 3 becomes in-
valid. This is because the instance of task 1 belonging
to the second iteration cannot start executing before
the the instance of task 2 belonging to the first itera-
tion of the loop. This constraint is introduced because
of the recurrence present in the DDG. The RecMIIr

for a recurrence r, is given by the ratio of the sum
of the latencies of the tasks in the recurrence to the
sum of the weights (6) of all the dependencies in a re-
currence. A graph may have more than one cycle, and
RecMII is then the maximum of the RecMIIr due to
each one of them, that is RecMII = max(RecMIIr),
for all the recurrences r in the DDG. The Mil is
then the maximum of ResMII and RecMII, that
is Mil = max(ResMII,RecMII). The maximum
execution throughput of a DDG, MaxTh is the max-
imum iterations of the steady state possible in one
time unit. Its given by:

i
MaxTh =

Mil

4 Pipeline Scheduling Technique
The objective of the technique is to obtain a

pipeline schedule of the the DDG which has Mil as

51

its initiation interval and which requires least amount
of shared memory. The pipeline schedule of the DDG
determines the steady state of the pipeline. The flow
diagram of the technique is shown in Figure 4. The
inputs to the pipeline scheduler are the partitioned
DDG, the codesign architecture and a desired upper
bound on initiation interval, MaxII. The pipeline
scheduler first calculates the Mil for the design. It
then tries to schedule the DDG in Mil time. If its
unsuccessful it selects a dependency to be retimed.
Retiming as we will see later transforms a schedule
constraining dependency into a free scheduling depen-
dency which does not constrain the scheduler. In this
process however, it increases the iteration indices of
some tasks. Hence retiming produces a DDG with
tasks belonging to different iterations of the steady
state. In other words retiming produces a pipelined .
DDG. This inner loop of scheduling and retiming
continues till a successful schedule is found or all the
dependencies have been retimed. In the latter case
we increase the initiation interval and try scheduling
again. We set the increment factor to the maximum
of the following two values: one time unit or one per-
cent of MIL We exit the outer loop when the initia-
tion interval II becomes greater than the user specified
MaxII.

The inputs to the scheduler are the DDG and the
expected initiation interval II. The objective of the
scheduler is to obtain a pipeline schedule of the DDG
in II time using the least amount of shared memory.
The schedule is an assignment of start times to tasks,
S{u), such that for all tasks u in the graph 0 < S(u) <
II [3]. For a dependency e = (u,v), the schedule
time of u and v must honor the data dependence, ie
S(v) + 6{u, v)xll> S(xi) + Lu =>S(v)> S(u) + LU-
S(u,v) x II. Also there should be enough resources
and shared memory to execute a task scheduled at a
particular time instance. The memory requirement of
a task during execution is the total memory required
by the variables in the task's read set and write set.
The pipeline schedule of a task is then formalized as
below:

For a given II, a pipeline schedule of DDG =
G(V, E, X, S) is an integer labeling, S -»■ N which ful-
fills the following conditions :

• Vu 6 V, 0 < S{u) < II.

• V(u,ü) S E,S{v) > S{u) + L„ - II ■ 6(u,v), that
is all dependences must be honored.

• There are sufficient resources (HW and SW) to
execute the task scheduled at a particular time in-
stant.

PIPELINE SCHEDULER
Calculate Mil

Set 11 = Mil

Schedule DOG
In II Time

II > MaxII

Yes

Unable to Schedule Output Succesful
In less than Max« Time Schedule, Throughput

Rate and Memory
Requirements

Figure 4: Pipeline Scheduling Technique

• There is sufficient memory to execute the task
scheduled at a particular time instant.

Schedule Constraining Dependencies. For a
given initiation interval II, the data dependencies
in a DDG can be classified in to positive scheduling
dependencies (PSDs), negative scheduling dependen-
cies (NSDs) or free scheduling dependencies (FSDs)
[3]. A dependency (u,v) is a PSD if Lu - II ■
6(u,v) > 0. A dependency is a FSD or NSD if
LU-II- 5{u, v) < 0. PSDs constrain scheduling since
they make S(v) > S(u), in other words task v must
be scheduled later than task u. FSDs do not con-
strain scheduling. NSDs could constrain a schedule
if pipelined resources are used or if an iteration of the
steady state begins before the previous one finishes
(non-rectangular schedule). Since neither of the two
conditions are true in our case, NSDs do not con-
strain the schedule. The set of schedule constraining
dependencies Es is then given by:

Es = {{u, v) e E\LU - II ■ 6(u, v) > 0}

52

PSDs are also called intra loop dependencies (or
ILDs) and FSDs and NSDs are together called as
loop carried dependencies (or LCDs). A dependency
(u, v) is a iXjD if S(u,v) = 0 and it is a LCI? if
6(u, v) > 0.

Given a set of schedule dependencies we can define
two properties for every task. The first one called the
height of the task, H(u) gives the as soon as possible
(ASAP) schedule time of a task. The second one called
the depth of a task, D(u) is a measure of the "urgency"
of the task to be scheduled. It is given by:

_, . _ J Lu, if there doesn't exist a {u,v) e Es

\ maxeS£s {D(v) + Lu - II ■ 6~{e)), otherwise

where e = (u,v). For an initiation interval II,
(II-D(u)) gives the as late as possible (ALAP) sched-
ule time of the task. Both these quantities can be
calculated by a breadth first search of the DDG.

A path p = {ei,...,e„} is called a positive path, if
Ve 6 p, e is a PSD. The Length of p is:

Length(p) = Lw + ^ (Lu - II • 5(u,v)),

(u.«0ep

where Lw is the latency of the tail task in the positive
path. For a task that is the head node of a positive
path the above expression gives the depth of the task.
A maximal positive path, MPP of a DDG, is a positive
path p such that, for any other positive path p' C E,
Lengthip) > Length{p'). The MPP for a DDG is
then given by:

MPP = max(D{u)),VueV

For a feasible schedule of a DDG with initiation in-
terval II,

MPP < II.

Calculation of Memory Requirement Now let
us consider the memory requirements of a pipeline
schedule. We assume that the memory is reserved for
the write set of a task as soon as it begins execution,
and it remains reserved until the task which uses the
data finishes execution. In other words, memory is
reserved for some data as soon as the producer task
begins execution and it is freed once the consumer task
finishes execution. In a pipeline schedule the memory
requirement is due to ILDs and LCDs. ILDs do not
cross the boundary between two consecutive iterations
of the steady state. All the data belonging to any ILD
is produced and consumed within one iteration of the
steady state. LCDs cross the boundary between two

iterations of the steady state. Depending on the dis-
tance (or 5) they might cross more than one boundary.
Hence before an iteration of the staedy state can begin
execution there is already some memory occupied by
the LCD data which is given by :

MevriLCD = ^Z e"ar x ^(e)
eeLCD

MerriLCD is the same at the beginning of each it-
eration of the steady state. Hence we need at least
MerriLCD memory for the pipeline design. The mem-
ory required during one iteration of the steady state
is the maximum amount of memory occupied by the
data items during execution, MerneXec- This memory
is both due to ILDs and LCDs. The memory require-
ment of a pipelined design, MemReq is then given by:

MemReq = max(MemccD,Memexec)

In the next section we discuss the list based schedul-
ing algorithm.

4.1 List Based Scheduler
We use a list based scheduler for scheduling the

DDG on the codesign architecture. The scheduler
maintains three ready lists, one each for HW, SW and
memory resource. The execution of a task can be di-
vided in to three states. When a task is selected to
be scheduled from either HW or SW ready list, it first
goes in to read state. When the task has finished read-
ing it goes in to run state and then in write state when
its writing data to the shared memory. A task in the
read and write states could cause a memory conflict
with another task. The scheduler resolves conflicts by
maintaining a ready list for the memory resource. A
task is added to HW or SW ready list when all its
predecessor tasks have been scheduled. When a task
is selected to be scheduled on a particular resource,
its goes into read state and is added to the memory
ready list. A task on completion of its read opera-
tion runs on the appropriate resource and gets added
to the memory ready list again when it goes into its
write state.

The scheduler uses the same heuristic priority func-
tion to select a task from the three ready lists. The
priority of a task to be selected depends on the follow-
ing four properties in descending order :

1. 0-Mobility: The mobility of a task is given by the
difference between its ALAP and ASAP times.
The ASAP time may change during scheduling
and its updated. The ALAP time of a task is
constant for a given initiation interval. If a task
has 0-Mobility then it must be scheduled at that

53

time. Otherwise the timing constraints will be
violated.

2. Mobility: A task with lesser mobility is selected to
be scheduled before a task with greater mobility.
It is a well established heuristic which is known
to produce good results.

3. Difference between number of read and write vari-
ables (or data items): The memory requirement
of a schedule is given by the maximum memory
occupied by the data items during one iteration
of the steady state. A task which reads more vari-
ables than it writes would reduce the number of
variables present in the memory. Hence it should
be scheduled near its ASAP time. Alternatively
a task which writes more variables than it reads
should be scheduled near its ALAP time.

4. Number of Successors: A list scheduling algo-
rithm performs better when it has more choice
in the ready list. Hence a task whose completion
adds more tasks to the ready list is selected.

A task with 0-mobility is always selected from the
ready list. If no task has 0-mobility we use property
2 to select a task, and properties 3 and 4 (in that
order) to break ties. In the next section we present
the retiming heuristic.

4.2 Retiming Heuristic
Retiming increases the distance of a dependence

and produces an equivalent DDG which satisfies the
following condition:
Two graphs, DDG = G(V,E,\,5) and DDG' =
G(V,E,X',6') are equivalent if, V(u,u) € E, the fol-
lowing equation holds,

\{v) - \{u) + 8(u,v) = A» - A» + 5'{u,v)

We do retiming when we are unable to schedule a
DDG in the given initiation interval, II. A successful
schedule for a DDG can be obtained by decreasing the
number of dependencies that constrain the schedule.
By retiming we can transform a PSD into a FSD
or NSD. The drawback of retiming is that it in-
creases the memory requirement of the schedule. We
can minimize this increase by using good heuristics
to select the dependency to be retimed. But this is
not enough. In order to produce an equivalent DDG
other dependencies might need to be retimed. The
increase in memory requirement due to these depen-
dencies should also be minimized. During retiming we
do not increase the distance of a dependence belonging
to a recurrence. Also we ensure that no dependency
has S < 0.

We do retiming in two steps. In the first step
we heuristically select a dependency to be retimed.
Increasing the distance of a dependence necessitates
changing the A and 6 of other tasks and dependencies.
In a DDG there might exist a number of sets of depen-
dencies whose distance could be increased to obtain an
equivalent retimed DDG. In step 2 we select the set
of dependencies which on retiming result in the least
increase in memory requirement. As a first step to-
wards retiming we select a dependency to be retimed.
The priority of a dependency to be retimed depends
on its following four properties in decreasing order:

1. Dependency is a PSD: The primary objective
of retiming is to reduce scheduling constraints in
the DDG; and give the scheduler greater freedom
in scheduling tasks on the resources. Only PSDs
constrain scheduling and therefore only PSDs are
retimed.

2. Dependency between tasks bound to heteroge-
neous resources: Increasing the distance of a de-
pendency between tasks mapped to the same re-
source does not necessarily help the scheduler.
Basically the two tasks have to be scheduled on
the same resource and will be scheduled one af-
ter the other. On the other hand retiming a
dependency between tasks mapped to different
resources definitely gives more freedom to the
scheduler.

3. Dependency whose predecessor task has a greater
sum of height and depth (H(u)+D(u)): The sum
of height (H(u)) and depth (D{u)) of a task gives
the length of the positive path to which it belongs.
Increasing the distance of a dependency whose
predecessor task has a greater sum (H(u) + D(u))
reduces the length of a longer positive path in the
DDG.

4. Dependency representing the least number of
variables transferred: A secondary objective of re-
timing transformation is to minimize the increase
in memory requirement of the DDG. Hence we
select a dependency representing fewer variables
being transferred.

We use property 1 to select dependencies to be re-
timed, and use properties 2 , 3 and 4 (in that order)
to break ties. Given a dependency e = {u,v) to be
retimed we define the following four sets with respect
to u:

Vc = {"connected component to which u belongs }

51

FDCT

--W— -'

V ^ COMHKTI» eowowwT v_o ^x jf~~~"~"~""*~

N^
«•■^ »i_»o_«cc aun -1.*«-

Figure 5: P , S and R sets during retiming of depen-
dency (u,v)

P = {v e Vc\there is a path from v to u } U {u}

S = {v € Ve\there is a path from u to v }

ij = Vc-{Pu5}

Figure 5 gives an illustration of the four sets. We
can retime the dependency e = (u, v) by the following
three equations.

A(u) = A(u) + 1

6{u,x) = 8(u,x) + l,Vx 6 V such that (u,x) € E

5{x,u) = S(x,u) -l,VxeV such that (z,u) <E £

Application of the three equations would result in an
equivalent DDG. However the third equation de-
creases the distance of some dependencies. This can
be avoided by increasing the A of all tasks which are in
P and increasing the <5 of all dependencies whose pre-
decessor task is in the set P and successor is in R U S.
This is the cutset cl in Figure 5. Another way to re-
time is to increase the A of all tasks in the set Pl)R and
increasing the S of all dependencies whose predecessor
is in PUR and successor is in S. This is the cutset c2
in Figure 5. However its possible that neither cutset
cl nor c2 give us a minimum increase in memory. We
could obtain another cutset c'3 (see Figure 5) by par-
titioning the set R into P and 5, so that the memory

QUANTIZATION

Q
y 16 data-Items

o
ZIG-ZAG

/

0
16 data-items

/'
16 data-items

HUFFMAN ENCODING 4 RLE o
Figure 6: DDG for JPEG like Compression Algorithm

increase is minimized. We use a simulated annealing
based partitioner. The cost function being minimized
is defined as follows. For a cut c,- = {ei,e2,...,e„},
the cutsize cost is given by :

' n

Cost — y^uar(ej)
i=i

var(ej) is the number of variables across the depen-
dency ej. In the above cost function the sum gives us
the extra memory required by the LCDs after retim-
ing. After partitioning R into P and 5, we do retiming
using the following two equations:

Vu€P,A(u) = A(u) + l

V(u,u) € E,u e P,v<£P,6(u,v) = 6{u,v) + 1

5 Experimental Results
We demonstrate the effectiveness of the tool in

codesign flow by considering the design of a JPEG
[4] like compression algorithm. The DDG of the spec-
ification is shown in Figure 6. It consists of four tasks,
Forward Discrete Cosine Transform (FDCT), Quanti-
zation, Zig-Zag and RLE and Huffman encoding. All
the dependencies have 5 = 0 and the number of vari-
ables transfered across each dependency is 16. The
memory read time is 16 ns and the memory write time
is 24 ns respectively. The run times of the various
tasks in SW and HW is shown in Table 1 [6]. Ta-
ble 2 shows the comparison between throughput and

55

No.

Number

of Tasks Depth

Non-Pipeline Pipeline Speed-up

(%)

Memory

Incr. (%) Time (ns) Memory Mil (ns) II (ns) Memory

1 3 1 110 8 90 90 16 18 100

2 3 2 390 7 240 290 14 34.5 100

3 5 3 230 17 .190 190 34 17.4 100

4 6 3 1410 30 1135 1170 75 17 150

5 8 5 750 170 600 600 190 20 11.7

6 8 7 890 10 730 730 20 18 100

7 8 7 740 10 425 470 20 36 100

8 8 7 890 5 465 580 20 35 300

9 10 4 1130 15 842 931 30 17.6 100

10 10 6 390 34 300 300 43 23 26

11 15 7 950 76 770 770 97 18.9 27.6

12 15 12 1290 52 860 860 66 33.3 26.9

13 20 7 1200 129 870 870 182 27.5 41

14 20 14 1150 96 1010 1010 104 12.2 8.3

15 50 6 6320 534 5640 5640 794 10.8 48.6

Table 3: Comparison between Non-Pipeline and Pipeline Implementations for Random Graphs

2, 4, 7, 8 and 9) we were not able to obtain pipeline
schedules with Mil as their initiation interval. This is
because of the memory conflicts during scheduling and
recurrences in the graph. Memory conflicts force the
scheduler to defer a read or a write operation thereby
increasing II. Dependencies belonging to recurrences
are not retimed, hence they constrain the scheduler
leading to an increase in II. The increase in memory
requirement of a pipeline schedule is due to the extra
memory that is required to store data items between
two iterations of the steady state. It is quite com-
mon for the increase to be in the region of 100 to 300
percent. Speed-up due to pipelining was achieved for
all graphs. For some graphs (rows 5, 10, 11, 12 and
13) a good speed-up was achieved with a low memory
increment, thereby making them ideal candidates for
pipelined implementation.

6 Conclusion
In this paper we have presented a pipeline schedul-

ing technique for optimizing the throughput and mem-
ory requirements of HW-SW codesigns. The effec-
tiveness of the technique was demonstrated by exper-
imentation. This technique will be an integral part
of a larger codesign tool now under development. Fu-
ture work will involve extension of the technique to
include general multiple ASIC architectures with dif-
ferent communication protocols.

References
[1] D.D. Gajski, N. Dutt, A. C-H Wu, S. Y-L

lin, High-Level Synthesis: Introduction to Chip
and System Design, Kluwer Academic Publishers,
1992.

[2] C.E. Leiserson and J.B. Saxe, "Retiming Syn-
chronous Circuitry," Algorithmica, Vol. 6, No. 1,
pp. 5-35, 1991.

[3] F. Sanchez, Loop Pipelining With Resource And
Timing Constraints, Ph.D. Dissertation, UPC
Universität Politechnica de Catalunya, Barcelona,
Spain, October 1995.

[4] W.B. Pennebaker and J.L.Mitchell, JPEG: Still
Image Data Compression Standard, Van Nostrand
Reinhold, 1993.

[5] N. Narasimhan, V. Srinivasan, M. Vootukuru, J.
Walrath, S. Govindrajan, and R. Vemuri, "Rapid
Prototyping of Reconfigurable Coprocessors", Pro-
ceedings of the 1996 International Conferences
on Application-Specific Systems, Architectures and
Processors, IEEE press, August 1996.

[6] J. Walrath, K. S. Chatha, R. Vemuri, N.
Narasimhan and V. Srinivasan, "Performance
Modeling and Tradeoff Analysis During Rapid

56

Prototyping", Proceedings of the 1996 Interna-
tional Conferences on Application-Specific Sys-
tems, Architectures and Processors, IEEE press,
August 1996.

[7] R.K. Gupta and Giovanni De Micheli, "Hardware-
Software Cosynthesis for Digital Systems", IEEE
Design and Test of Computers, pp. 29-41, Septem-
ber 1993.

[8] R. Ernst, J. Henkel and T. Benner, "Hardware-
Software Cosynthesis for Microcontrollers", IEEE
Design and Test of Computers, pp. 64-75, Decem-
ber 1993.

[9] T. Benner and R. Ernst, "A combined Partitioning
and Scheduling Algorithm for heterogeneous Mul-
tiprocessor Systems", Technical Report CY-96-2,
Institute of Computer Engineering, Technical Uni-
versity of Braunschweig, Germany.

[10] D.E. Thomas, J.K. Adams amd H. Schmit, "A
Model and Methodology for Hardware-Software
Codesign", IEEE Design and Test of Computers,
pp. 6-15, September 1993.

[11] P.H. Chou, R.B. Ortega and G. Borriello, "The
Chinook Hardware/Software Co-Synthesis Sys-
tem", Proceedings of ISSS-95, Cannes, France,
September 13-15, 1995.

[12] P.Chou, E.A. Walkup and G. Borriello, "Schedul-
ing for Reactive Real-Time Systems", IEEE Micro,
pp 37-47, August 1994.

[13] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, K. Suzuki, S. Yee and A. Sangiovanni-
Vincentelli, "Hardware-Software Codesign of Em-
bedded Systems", IEEE Micro, pp 26-36, August
1994.

57

APPENDIX D :.
RECOD: A Retiming Heuristic To Optimize

Resource And Memory Utilization In

HW/SW Codesigns*

Karam S Chathatand Ranga Vemuri *

Laboratory for Digital Design Environments

Department of ECECS

P.O. Box 210030
University of Cincinnati

Cincinnati, OH 45221-0030

SLIGHTLY REVISED VERSION OF THE PAPER ORIGINALLY ACCEPTED AT

EURODAC-97 (PAPER CODE D130).
THIS PAPER TAKES THE REVIEWERS COMMENTS IN TO ACCOUNT.

DATE-98 TOPIC 2 :HW/SW CODESIGN

All appropriate clearances for the publication of this paper have been obtained, and if accepted the authors
will prepare the final manuscript in time for inclusion in the Conference Proceedings and will present the

paper at the Conference.

(Karam S Chatha)

"This work was partially supported by the ARPA RASSP program and monitored by the Wright Lab, US-AF under
contract number F33615-93-C-1316.

designated presenter, should the paper be accepted
* Author for Correspondence, (513)-556-4784 (Voice), (513)-556-7326 (FAX), Ranga.Vemuri@UC.EDU

"58

RECOD: A Retiming Heuristic To Optimize Resource And Memory
Utilization In HW/SW Codesigns

Abstract

Hardware/Software designs of embedded systems are characterized by stringent performance constraints.
Pipelined implementation of a design is an effective way for maximizing the performance of a design. In
this paper we present a retiming heuristic to obtain pipelined schedules for hardware-software codesigns.
The heuristic aims at maximizing the throughput of a resource constrained codesign while minimizing its

memory usage. The effectiveness of the proposed technique is demonstrated by experimentation.

59

hw, 75 t-units

NON-PIPELINED DESIGN

TASK GRAPH

vsw, 100 t-units

•!,
40 data items

!
sw 1,1 3,1 1,2 ;3,2

hw "I 4,1 2,2 4,2
1 !

sw, lOOt-units

hw, 125 t-units

PIPELINED DESIGN

sw

hw

1,1 13,1
2,1

1,213,2

4,1 2,2

1,3

4,2

resources

PROLOGUE STEADY I
STATE!

3,3

2,3

i,

time

ED

EPILOGUE

70 data items

Figure 2: Non-Pipelined and Pipelined Implementations of a Task Graph

the task. The memory requirement of the implementation is the maximum memory used by one iteration

of the loop (shown by the dotted line in the figure). This happens when tasks 2 and 3 execute in parallel.

Task 2 needs memory for 20 data items and task 3 needs memory for 10 data items. Also at this point

in time the variables transferred from task 1 to task 4 (10 data items) are also stored in the memory.

Hence the maximum memory used by the implementation is for 40 data items. Now consider a pipelined

implementation of the same task graph (lower right corner of the figure). A pipeline execution of a design

can be divided into 3 parts. The first part which loads the pipeline is called the prologue. The second part

is the steady state which is executed a several times. Finally the last part which down loads the pipeline is

called the epilogue. As shown in the figure the execution of task 4 belonging to the first iteration of the loop

is overlapped with execution of task 1 belonging to the second iteration. Once fully loaded the steady state

completes one iteration of the loop every 200 t-units. A definite improvement over the previous design.

The drawback is that the memory requirement has increased to 70 data items (shown by the dotted arrow

line).

We implement pipelined designs by using retiming transformation. Retiming to generate pipelined design

is considered a generalization [3] of the classical transformation introduced by Leiserson and Saxe [10]. A

similar problem is the software pipelining problem [9] in code generation for VLIW architectures. Given a

task graph to be pipelined it can generally be retimed in more than one way. We need to select a retiming

that gives us the least increase in memory requirements. In this paper we present a Retiming heuristic for

optimal resource and memory utilization in HW/SW Codesigns (RECOD).

In this paper we concentrate on the design of DSP applications. DSP applications have moderately simple

algorithms and they demand high performance and throughput; thus necessitating search for efficient and

60

inexpensive implementations [13]. Besides many of these applications are loop oriented where a single

block of code is executed a number of times on different set of data, thereby making them ideal candidates

for pipelined implementation.

In this paper we assume that the SW processor and the ASIC in the codesign architecture are themselves

non-pipelined with respect to task execution. We also assume that the pipeline schedule is rectangular

in nature, that is a new iteration of the steady state does not begin before the previous one is over. In

a non-rectangular schedule the execution of a task belonging to one iteration of the steady state overlaps

with the execution of a task belonging to the next iteration.

The paper is organized as follows. In Section 2 we discuss previous work, in Section 3 we describe the

graph representation and pipeline schedule, Section 4 presents RECOD, experimental results are in Section

5 and finally Section 6 concludes the paper.

2 Previous Work

The term "Retiming" was introduced by Leiserson and Saxe [10] when they used it to solve the problem of

optimizing the throughput of synchronous circuitry. Retiming was used to describe the re-distribution of

register delays between combinational blocks in a synchronous circuit. They developed an ILP formulation

to solve the problem. Since then retiming transformation has been used extensively in logic synthesis [11],

high level synthesis [15] [17], HW-SW codesign [18] and DSP applications [7] [8]. Pipelining is considered a

generalization of the retiming problem in which circuit latency is allowed to increase by allowing a change

in the production and consumption times of output and input signals respectively [3].

The term "Software Pipelining" was introduced by M. Lam [9]. She used it to describe a loop scheduling

technique for code generation of VLIW processors. In software pipelining multiple iterations of the loop

in various stage of their execution are in progress simultaneously. This description relates it very closely

to pipelining in hardware systems. Since then a number of heuristic [1] [6] and ILP formulations [4] [12]

have been proposed to solve the software pipelining problem. [16] gives a good comparison and survey of

the techniques. [2] establishes a link between circuit retiming and software pipelining.

The work that comes closest to the paper is that of Sanchez presented in [17].' In that work, Sanchez

has used a retiming heuristic in a high level synthesis tool that aims at obtaining pipelined designs with

optimum throughput. The retiming heuristic retimes the head or tail dependency of the maximum positive

path in a graph. In this paper we present a new retiming heuristic which optimizes both throughput and

memory requirements of pipelined codesign applications. Our heuristic does retiming in two steps. In the

first step it selects a dependency to be retimed which gives the maximum freedom to the scheduler. In the

second step it selects the other dependencies (in addition to the first one) which on retiming result in an

equivalent graph with the least increase in shared memory requirements. Experimental results show that

our retiming strategy produces designs which use significantly lesser memory and operate at the optimum

throughput rate.

61

3 Graph Representation and Pipeline Scheduling

Graph Representation The input specification is captured by an intermediate graph format called the

Data Dependency Graph (DDG). It represents the tasks by vertices and the data dependencies between

tasks by directed edges. The vertices have information about the task binding (HW or SW), HW run

time and SW run time. The edges have information about the number of variables in a dependence.

Since we are interested in pipelining the design, we associate with each vertex an iteration index (A) and

with each edge a dependency distance (<5). The iteration index of a task u, X(u) indicates that at the

ith iteration of the steady state, instance of task u belonging to the (i + X(u)) iteration of the loop is

executed. For example consider the pipelined design in Figure 2. In the first iteration of the steady state,

instance of task 2 belonging to the second iteration of the loop is executed, hence X(task2) = 1. Similarly

X(taskl) = l,X(task3) = 1 and X(task4) = 0. The dependence distance of an edge e, 6(e) indicates the

distance of the dependence. In Figure 2 the data produced by task 1 at the ith iteration of the steady

state is consumed by task 4 at the (i + l)th iteration of the steady state. Hence the dependence distance

of edge (1,4) is 5(1,4) = 1. Similarly 5(1,2) = 0,5(1,3) = 0,5(2,4) = 1 and 5(3,4) = 1. We now formalize

the DDG representation as follows:

A DDG is a 4-tuple DDG = G(V, E, A, 5), where :

• V is the set of vertices. Each vertex u € V represents a task. For each task u € V we have the

following information available to us :

— Ubind ■' The binding of the task, that is whether its going to be implemented in HW or SW.

— usw : The SW runtime of the task for a particular input data on the general purpose processor.

— Uhw '■ The HW runtime of the task if it were to be implemented as an ASIC for the same input

data.

• E is the set of directed edges. Each e = (u, v) € E represents a data dependence between tasks u and

v. Every edge has information about the number of variables (evaT) represented by the dependence.

• A and 6 are two mappings, X : V -> N and S : E -> N, representing the iteration index (X) and the

number of iterations traversed by the dependence (5), also called dependence distance. IN is the set

of natural numbers.

Initially, Vu G V, X(u) = 0. Notice that the representation has no control flow constructs; it is strictly

data flow.

Theoretical Upper Bound on Throughput Given a DDG there exists a theoretical upper bound on

the throughput of a pipeline schedule of the graph [17]. It is called the maximum execution throughput

(MaxTh) and it gives the maximum number of iterations of the steady state in one time unit. The reciprocal

of MaxTh is called the minimum initiation interval (Mil). For a particular pipeline implementation the

initiation interval, II, is the time taken for one iteration of the steady state. For example in Figure 3, the

62

pipelined implementation has 77 = 200 t-units. The Mil is limited by two factors. Firstly the number of

resources (HW or SW) limit MIL This is called the resource constrained Mil, ResMII. Consider again the

example shown in Figure 2. The task graph has two tasks 1 and 3 bound to SW. Hence we need at least

200 t-units to complete the execution of task 1 and 3. Similarly we need at least 200 t-units to complete

execution of tasks 2 and 4 in HW. The ResMIIi due to a resource i is given by the ratio of the sum of

the latencies of all the tasks executing on the resource i by the total number of instances of resource i [17].

The latency of a task u, Lu, is the total execution time of the task. It is the sum of the task's read time,

execution time on the particular resource that its been bound to and write time. The read (write) time of

a task is the product of the number of variables read (written) by the task and the memory read (write)

time. Hence we have,

, f Usw if Ubind = SW
Lu = Ui+ Urdtime + V-wrtime Where, U{ = <

[Uhw if Ubind = nw

Since the codesign architecture has only one HW and one SW resource, we can calculate ResMIIxw

and ResMIIsw as the sum of latencies of all tasks bound to HW and SW respectively. ResMII for a

DDG is the maximum of all the ResMIIi, therefore we have ResMII - max(ResMII'HW, ResMIISw)-

Secondly recurrences or cycles in a task graph also limit MIL This is called the recurrence constrained

Mil, RecMII. Let us assume that in Figure 2, the data produced by task 4 in ith iteration of the loop

is consumed by task 1 in the (i + l)th iteration, that is let us add an edge e = (4,1) with 5(4,1) = 1 to

the task graph. In such a case the schedule shown in the figure becomes invalid. This is because now we

cannot overlap the execution of task 1 and task 4. Infact any schedule of the graph now takes at least 325

t-units. The RecMIIT for a recurrence r, is given by the ratio of the sum of the latencies of the tasks in

the recurrence to the sum of the weights (<5) of all the dependencies in a recurrence [17]. A graph may

have more than one cycle, and RecMII is then the maximum of the RecMIIT due to each one of them,

that is RecMII = max{RecMIIT), for all the recurrences r in the DDG. The Mil is then the maximum

of ResMII and RecMII. That is,

Mil = ^(ResMII, RecMII) => MaxTh = {max{ResMn, RecMII))

Pipeline Schedule The pipeline schedule of a task graph is characterized by its initiation interval

27. The schedule is an assignment of start times to tasks, S(u), such that for all tasks u in the graph

0 < S(u) < (II-1). For a dependency (u, v), the schedule time of u and v must honor the data dependence,

that is
S(v) + 5(u, v)-II> S(u) + Lu => S(v) > S(u) + LU- 5(u, v) ■ II

As we will see in the next paragraph not all dependencies constrain a pipeline schedule. The dependencies

which do not constrain a schedule can be ignored during scheduling. We obtain a pipeline schedule by

scheduling [5] and retiming in an iterative manner as shown in Figure 3. We calculate the Mil, and try

scheduling the DDG for MIL However due to constraining dependencies we may not be able to schedule

the DDG in MIL If we can't we retime the DDG and try again. The objective of retiming is to reduce

the number of schedule constraining dependencies.

63

1 \ \
-*Y

1
1
\
\
\
\
\

\ \ CALCDLXTS

Mil

--^^"

\
\
\

MTIKI

OUTPUT SUCCESSFUL
SCHEDULE

Figure 3: Pipeline Scheduling by Iterative Retiming

Schedule Constraining Dependencies Depending on whether S(u, v) is equal or greater than zero

a data dependency (u, v) may or may not constrain a pipeline schedule. A dependency with S(u, v) — 0

constrains a pipeline schedule. This is because now S(v) > S(u) + Lu is strictly positive. Essentially a

data dependence with 5(u, v) = 0 implies that the data produced by the predecessor task u is consumed

by the successor task v in the same iteration of the steady state and hence it constrains the schedule.

Such a dependency is called a positive scheduling dependency (PSD) [17] or intra loop dependency (ILD).

A dependency (u, v) with ö(u,v) > 0 gives us two cases. First consider a dependency dependency with

6(u,v) > O'and Lu - II ■ 5{u,v) < -(II -1). Such a dependency does not constrain a pipeline schedule

since for all values of S(u) and S(v) the data dependence is satisfied, that is

If S(u, v)>0 and LU-II- 6{u, v) < -{II - 1) then,

S(v) > S{u) + Lu - S{u, v) ■ II, V5(u), S{v) e [0, II).

Such a dependency is called a free scheduling dependency (FSD) [17]. Now consider a dependency with

8(u,v) > 0 and —(II - 1) < Lu - II ■ 5(u,v) < 0. Such a dependency is called a negative scheduling

dependency (NSD) [17] and it will constrain a pipeline schedule under two conditions. Firstly if the pipeline

schedule is non-rectangular then the NSDs would constrain the schedule. Secondly if the resources on

which tasks u and v are executing are themselves pipelined then NSDs would constrain the schedule. Since

neither of these two conditions are true in our case NSDs do not constrain the pipeline schedule. FSDs

and NSDs together are called loop carried dependencies (LCDs) since they represent a data dependence

between tasks executing in different iterations of the steady state. Hence for a given initiation interval II,

the set of schedule constraining dependencies, Es is set of PSDs in the DDG, that is

Es = {(u,v) e E\5(u,v) = 0}

64

The initiation interval II of a pipeline schedule is constrained by the length of the maximum positive path

(MPP) in the DDG. A path p = {ei,..., en} is called a positive path, if Ve € p, e is a schedule constraining

dependency. The Length of p is:

Length{p) = Lw + ^ (Lu),
(u,v)ep

where Lw is the latency of the tail task in the positive path. A maximal positive path, MPP of a DDG,

is a positive path p such that, for any other positive path p' C E, Length(p) > Length(p'). For a feasible

schedule of a DDG with initiation interval II,

Length{MPP) < II.

Hence during retiming we should try to reduce the number of schedule constraining dependencies which to a

longer positive path. Before we present the retiming algorithm in the next section, we discuss the memory

requirements of a pipeline schedule in the following paragraph.

Calculation of Memory Requirement We assume that the memory is reserved for the write set of

a task as soon as it begins execution, and it remains reserved until the task which uses the data finishes

execution. In other words, memory is reserved for some data as soon as the producer task begins execution

and it is freed once the consumer task finishes execution. In a pipeline schedule the memory requirement

is due to ILDs (PSDs) and LCDs (FSDs and NSDs). ILDs do not cross the boundary between two

consecutive iterations of the steady state. All the data belonging to any ILD is produced and consumed

within one iteration of the steady state. LCDs cross the boundary between two iterations of the steady

state. Depending on the distance (or S) they might cross more than one boundary. Hence before an

iteration of the steady state can begin execution there is already some memory occupied by the LCD data

which is given by :

MerriLCD = X evar x <^e)
e€LCD

MerriLCD is the same at the beginning of each iteration of the steady state. Hence we need at least

MemLCD memory for the pipeline design. The memory required during one iteration of the steady state

is the maximum amount of memory occupied by the data items during execution, Memexec. This memory

is both due to ILDs and LCDs. The memory requirement of a pipelined design, MemReq is then given

by:
MemReq = max(MemicD,Memexec)

As we see by the above discussion MemLCD is a lower bound on the memory requirement of a pipeline

schedule. During retiming we convert a schedule constraining dependency {ILD) in to a LCD which does

not constrain the schedule, thereby increasing MemicD- Therefore during retiming we should try to reduce

the increase in Mernico-

Each task in the DDG is bound to a unique resource. Hence ResMII is an achievable lower bound. In other

words we should be able to schedule the DDG in Mil time when the binding is known (and RecMII <

■':65

ResMII). The general case where binding is unknown increases the complexity of the scheduler. However,

the retiming heuristic should work equally well in the general case.

4 RECOD: Retiming Heuristic for HW/SW Codesigns

We do retiming when we are unable to schedule a DDG in the given initiation interval, II. A successful

schedule for a DDG can be obtained by decreasing the number of dependencies that constrain the schedule.

By retiming we can transform a PSD into a FSD or NSD (LCDs) by increasing the dependence distance

(5). LCDs do not constrain an iteration of the loop. During retiming we ensure that no dependency

has 5 < 0. Also retiming should produce an equivalent DDG. Two graphs, DDG — G{V, E, A, 5) and

DDG' = G(V,E, A', 6') are equivalent if, V(u,v) G E, the following equation holds,

X(v) - \{u) + 6(u, v) = A» - A» + S'(u, v)

Retiming produces a DDG with tasks belonging to different iterations. In other words dependence retiming

helps in pipelining a DDG.

The drawback of retiming is that it increases the memory requirement of the schedule. Since we now

have tasks belonging to different iterations executing at the same time, we need more shared memory to

store data between successive iterations of the steady state. We can minimize this increase by using good

heuristics to select the dependency to be retimed. But this is not enough. In order to produce an equivalent

DDG other dependencies might need to be retimed. The increase in shared memory requirement due to

these dependencies should also be minimized. Hence RECOD does retiming in two steps. In the first step

it heuristically selects a dependency to be retimed. Increasing the distance of a dependence necessitates

changing the A and 5 of other tasks and dependencies. Decreasing the 5 of a dependence is likely to change

it in to a PSD. Hence during retiming we only increase the distance of the dependencies. In a DDG there

might exist a number of sets of dependencies whose distance could be increased to obtain an equivalent

retimed DDG. In step 2 we select the set of dependencies which on retiming result in the least increase in

shared memory requirement.

The distance of a dependency belonging to a recurrence in the DDG cannot be increased without de-

creasing the distance of any other dependency. Hence during retiming we do not increase the distance

of a dependence belonging to a recurrence. A dependence not belonging to a recurrence can however be

retimed without decreasing the distance of another dependence.

4.1 RECOD Step 1: Heuristic To Select A Dependency For Retiming Transformation

As a first step towards retiming we select a dependency to be retimed. The priority of a dependency to be

retimed depends on its following four properties in decreasing order:

66

1. Dependency is a PSD.

The primary objective of RECOD is to reduce scheduling constraints in the DDG; and give the

scheduler greater freedom in scheduling tasks on the resources. Only PSDs constrain scheduling.

Hence the dependency to be retimed should be a PSD, and not a NSD or FSD.

2. Dependency between tasks bound to heterogeneous resources.

As mentioned above the main objective of the retiming heuristic is reduce scheduling constraints in

the graph. Increasing the distance of a dependency between tasks mapped to the same resource does

not necessarily help the scheduler. Basically the two tasks have to be scheduled on the same resource

and will be scheduled one after the other. On the other hand retiming a dependency between tasks

mapped to different resources definitely gives more freedom to the scheduler.

3. Dependency whose predecessor task belongs to a longer positive path.

As discussed in the previous section the positive paths limit the II of a pipeline schedule. Increasing

the distance of a dependency whose predecessor task belongs to a longer positive path helps in
% obtaining a pipeline schedule with smaller II and therefore higher throughput.

4. Dependency representing the least number of variables transferred.

A secondary objective of retiming transformation is to minimize the increase in memory requirement

of the DDG. Increasing the distance of a dependency with more variables definitely results in a larger

increase in memory requirement. Hence we select a dependency representing fewer variables being

transferred.

We use property 1 to select dependencies to be retimed, and use properties 2 , 3 and 4 (in that order) to

break ties.

4.2 RECOD Step 2: Partitioning To Minimize Increase In Memory Requirement
During Retiming

The primary objective of retiming is to give the scheduler greater freedom. This is achieved by the

heuristic described above. We now select the set of dependencies which give us the least increase in

memory requirement. Given a dependency e = (u, v) to be retimed we define the following four sets with

respect to u:

Vc = {connected component to which u belongs }

P = {v £ Vc\there is a path from v to u } U {u}

S = {v E Vc\there is a path from u to v}

R = VC-{PUS}

Figure 4 gives an illustration of the four sets. We can retime the dependency e = (u, v) by the following

three equations.
\{u) = \{u) + 1

67

i — » — — » — ^ a — _■, — —- CtIT Cl

»■. »I_HO_SCC 6XUB „,«."*

Figure 4: P, 5 and P sets during retiming of dependency fu,v,)

<5(u,z) = S(u,x) + l,Wx£V such that (u,x) G E

S(x,u) = S(x,u) — l,Vx G V such that (x,u) G 23

Application of the three equations would result in an equivalent DDG. However the third equation decreases

the distance of some dependencies. This can be avoided by increasing the A of all tasks which are in P, that

is Vu G P, X(u) = X(u) +1. Now to obtain an equivalent DDG we need to increase the 5 of all dependencies

whose predecessor task is in the set P, but successor isn't, that is V(u, v) G E,u G P,v g" P, S(u, v) =

6(u,v) + 1. This is the cutset cl in Figure 4. Another way to retime without decreasing the 6 of any

dependence is as follows, Vu G {PU22}, A(ti) = A(u) +1 and V(u,v) G E,u 0 S,v G S,6{u,v) = S(u,v) +1.

This is the cutset c2 in Figure 4. However it is possible that neither cutset cl nor c2 might give us a

minimum increase in memory. We could obtain another cutset c3 (see Figure 4) by partitioning the set R

into P and S, so that the memory increase is minimized. We use a simulated annealing based partitioned

The cost function being minimized is defined as follows. For a cut q, = {ei, e2,..., en}, the cutsize cost is

given by :
n

Cost = ^2 var(ej)
j=i

var(ej) is the number of variables across the dependency ej. In the above cost function the sum gives us

the extra memory required by the LCDs after retiming. During partitioning we ensure that if a task u is

in partition P (5) then all its predecessors (successors) are also in partition P (5). After partitioning set

10

6.8

Algorithm RECOD: Retimes the DDG

Input : DDG

Output : Retimed DDG with less number of PSDs

Begin

DDGnoscc = removejscc(DDG)

edge(UtV) = heuTisticselect(D DGnoscc)

if (edge^yV-) = 0) then return(7?DG,failure)

Vc = {connected component to which u belongs}

S = {v € Vc\there is a path from u to v}

P =z {v £ Vc\there is a path from v to u} U {u}

R = Vc-{SuP}

partition (R,P, S)

for each x £ Vc

if (x e P) then X(x) = A(x) + 1 endif

endfor

for each (x,y) € Ec

if (x € P AND y&S) then S(x, y) = S(x, y) + 1 endif

endfor

copy-changes(DDGno-3cc, DDG)

ret\xrn(DDG, success)

end

Figure 5: RECOD: Algorithm

R in to sets P and S we do retiming using the following two equations:

Vu e P, A(u) = X(u) + 1

V(u,u) e£,ti£P,v &P,6(u,v) = 5{u,v) + l

4.3 RECOD: Algorithm

The algorithm to do retiming transformation is shown in figure 5. A brief explanation of the functions used
in the algorithm are as follows. The function removesccQ replaces every strongly connected component,
scci (or recurrence) in the DDG with a single task usccj. It returns a new graph DDGn0_sCC. All the
dependencies that are part of a recurrence sect are not present in DDGno^Cc- AH the dependencies that
are "to" and "from" any task in the scci are now from the single task usccj. We use DDGno_sCC for
retiming. By removing all the sec tasks and dependencies we ensure that no dependency belonging to a
recurrence is retimed; although the A of all the tasks belonging to a recurrence might be increased. The
changes are reflected in the original DDG by the function copy-changes (). The function heuristics elect ()
heuristically selects a dependency to be retimed (see section 5.1). The function partitionQ as the name

11

;69

O
QUANTIZATION

HUFFMAN ENCODING 4 RLE

• ' 16 data-Kami

Ö
,'• 16 dat*-itams

o
,'• 16 data-Rama

o
Figure 6: DDG for JPEG like Compression Algorithm

id. Task SW time(ns) HW time(ns)

1 FDCT 371300 8400

2 Quant. 7560 600

3 ZigZag 1630 400

4 RLE U Huff. 18480 884000

Table 1: SW and HW run times for various JPEG tasks

suggests partitions R between P and S (see section 5.2). The two for-loops do the retiming. The first one

increases the A of all tasks u 6 P. The second one increases the 5 of all dependencies (u, v), u € P, v £ S.

5 Experimental Results

To demonstrate the effectiveness of the retiming heuristic in HW/SW codesign, we consider the design of

a JPEG [14] like compression algorithm. The DDG of the specification is shown in Figure 6. It consists

of four tasks, Forward Discrete Cosine Transform (FDCT), Quantization, Zig-Zag and RLE and Huffman

encoding. All the dependencies have 6 = 0 and the number of variables transfered across each dependency

is 16. The respective run times of the various tasks in SW and HW is shown in Table 1 [19]. Table 2

shows the estimated throughput and memory requirements for various bindings of the tasks. Columns

two to five give the bindings of the tasks. The sixth and seventh columns have the run time and memory

requirement of the non-pipeline design of the application. The eighth column gives the Mil of the pipeline

implementation. Columns nine and ten give the achieved II and the memory requirement of the pipeline

implementation. The speed-up and increase in memory requirement due to pipeline implementation are in

columns eleven and twelve respectively. In the table we have exhaustively bound all the tasks to SW and

HW. Since we have four tasks, we have sixteen rows in the graph. The results show that we were always

able to schedule the DDG in Mil time. We can achieve a speed-up of upto 1.6 (row 15). The maximum

12

70

[6] R.A. Huff, "Lifetime Sensitive Modulo Scheduling", Proceedings of the '93 SIGPLAN conference on Programming Language Design
and Implementation, pp 258-267, June 1993.

[7] S. Huang and J. Rabaey, "Maximizing the Throughput of High Performance DSP Applications using Behavioral Transformations",
Proceedings of EDAC-ETC-EUROASIC '94, pp 25-40, March 1994.

[8] L. Jeng and L. Chen, "Rate-Optimal static scheduling for recursive DSP algorithms by retiming and unfolding", International Journal
of Electronics, 1992, Vol. 73, No. 4, pp 687-701.

[9] M. Lam, "Software Pipelining: An effective scheduling technique for VLIW Machines", ACM SIGPLAN, 1988.

[10] C. E. Leiserson and J. B. Saxe, "Retiming Synchronous Circuitry", Algorithmica, vol. 6, no. 1, pp. 5-35, 1991.

[11] S. Malik, K.J. Singh, R.K. Brayton and A. Sangiovanni-Vincentelli, " Performance Optimization of Pipelined Logic Circuits Using
Peripheral Retiming and Resynthesis" •, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol 12,
No. 5, May 1993.

[12] Q. Ning and G.R. Gao, "A Novel framework of Register Allocation for Software Pipelining" , Conference Record 20"1 Annual ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages, pp 29-42, Jan 10-13, 1993.

[13] N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S. Govindrajan, and R. Vemuri, "Rapid Prototyping of Reconfigurable
Coprocessors", Proceedings of the 1996 International Conferences on Application-Specific Systems, Architectures and Processors,
IEEE press, August 1996.

[14] W.B. Pennebaker and J.L.Mitchcll, "JPEG: Still Image Data Compression Standard", Van Nostrand Reinhold, 1993.

[15] M. Potkonjak and J. Rabaey, "Optimizing Resource Utilization Using Transformations", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol 13. No. 3, March 1994.

[16] J. Ruttenberg, G.R. Gao, A. Stoutchinin and W. Lichtenstein, "Software Pipelining Showdown: Optimal vs. Heuristic Methods in
a Production Compiler", ACM SIGPLAN NOTICES, May 1996.

[17] F. Sanchez, "Loop Pipelining With Resource And Timing Constraints", Ph.D. Dissertation, UPC Universität Politechmca de
Catalunya, Barcelona, Spain, October 1995.

[18] M. Sheliga, N.L. Passos and E.H. Sha, "Fully Parallel Hardware/Software Codesign For Multi-Dimensional DSP Applications",
Proceedings of 4th International Workshop on Hardware/Software Co-Design (Codes/CASHE '96), March 1996.

[19] J. Walrath, Karam S. Chatha, R. Vemuri, N. Narasimhan and V. Srinivasan, "Performance Modeling and Tradeoff Analysis During
Rapid Prototyping", Proceedings of the 1996 International Conferences on Application-Specific Systems, Architectures and Processors,
IEEE press, August 1996.

15

71

APPFNDIX E:
Hardware/Software CoSynthesis: Multiple Constraint Satisfaction and

Component Retrieval*

R. Miller H. Carter K. Davis1

Electronic Design Automation Research Center
University of Cincinnati

Cincinnati, OH 45221-0030
{rmiller, hcarter, kcd}@ece.uc.edu

Abstract

Hardware'software CoSynthesis is a complex
process that involves transforming a high-level system
specification to an implemented hardware/software
system that meets the specification constraints. One
phase of the CoSynthesis process is described here:
partitioning the specification into components and
binding them to hardware/software resources.
Partitioning requires an effective means to explore the
design space; challenges include (1) supporting
constraint-driven retrieval and (2) evaluating candidate
solutions considering the interaction of multiple
constraints. The CoSynthesis Tool described here
assigns scores to candidate solutions using multiple
design constraints, but rather than the simple sum
approach predominant in CoSynthesis research, it uses a
vector of rank data that does not require that equal
weight be given to all criteria. Our results to date show
that not only can we can process a scaleable, selectable
set of design constraints, but when compared with a 2
constraint Fidducia-Matheyses (FM) approach, we
achieve better results. The flexible component retrieval
is accomplished using our database system; the database
is unique for three reasons: (1) it uses a hardware
description language as the basis for its conceptual
model, (2) it allows flexible, ad hoc querying over
designs, and (3) it uses a fine granularity of component
modeling to enable detailed search conditions required by
the CoSynthesis Tool.

1. Introduction

Hardware/software CoDesign and CoSynthesis
can be characterized as a binding problem: binding
components from a database to functional specifications
in onier to create a hardware/software system that carries
out the desired functionality and meets performance

S. Venkatesan
Intel Corporation

RN4-40, 2200 Mission Clg. Blvd.
Santa Clara, CA 95052

satishSscdt.Intel.com

constraints. The CoDesign methodology used in our
research is embodied in the hardware/software CoDesign
and CoSynthesis project called COMET [Vem94]. The
general goal of COMET is to transform high level
system specifications into application specific electronic
signal processing modules using a hardware/software
CoSynthesis process and to produce working hardware
within a two week time period. HW/SW
CoDesign/CoSynthesis is assumed to be the requisite
approach for reducing the development cycle [Gaj94]
and time to market. Current time to market for a
complex HW/SW system is approximately 18 months
IKeu94].

An abstract representation of the major
COMET system components is given in Figure 1. A
user supplies a system specification that is divided into
modules, matched to component specifications, and then
allocated to either hardware or software synthesis
processes. The CoSynthesis process is iterative;
alternate bindings are used to satisfy constraints such as
performance and area requirements. The CoSynthesis
Tool issues requests to the design database using
qualifications on design properties, and the query
processor determines the set of design objects that
subsume the request In other words, a query is a
module description, and any modules in the database
that have at least the desired functionality (possibly
additional functionality) are returned. The CoSynthesis
Tool analyzes candidate solutions and determines the
best assignment of resources to hardware and software
using an iterative binding algorithm. The hardware and
software specifications are processed by hardware and
software synthesis tools, then integrated to form a
system that satisfies the initial specifications. The end
result of these transformations is an application specific
hardware design that can be fabricated along with the
embedded software that will be executed on the
manufactured hardware. The shaded portion of Figure 1

* Partially supported by NSF Grant IRI-9210200 and ARPA's RASSP Technology Program, contract F 33615-93-C-1316.
1 Author for correspondence. Phone: (513) 556-2214. Fax: (513) 556-7326

72

highlights the subsystems described in this paper, the
CoSynthesis Tool and the design database.

SefiHe*Sjxsctßc»tlei8

Figure 1. Application Environment.

2. The CoSynthesis Tool

The goal of the HW/SW CoSynthesis tool is
to allocate hardware and software resources for the
modules given in a high-level system specification.
Input to the CoSynthesis Tool specifies the system
functionality and performance constraints levied on the
system by the designer. They can specify (but are not
limited to) the final design's size, weight, power
consumption, heat dissipation, and speed. The output
of the CoSynthesis tool consists of bindings of
modules to resources. The resources come from a pre-
defined component database. It is the interplay of their
attributes (size, weight, power, etc.) with particular
bindings of resources to actions that determines how
well the final design meets the performance constraints
[Mil95]. In this paper, our preliminary implementation
produces a VHDL configuration body as output.
VHDL uses configuration bodies to specify bindings
between components within a design and their
implementation in a VHDL library of components.
Extensions to this research have the goal of producing a
configuration body and an updated architecture reflecting
hardware and software resource allocations.

The relationship of our CoSynthesis algorithm
and algorithms used for traditional hardware partitioning
is described in Section 2.1. Our algorithm is proposed
in Section 2.2.

2.1 Related Work

Iterative techniques such as Simulated
Annealing (SA). Kerrdghan-Lin (KL). Fiduccia-
Mattheyses (FM). and Genetic Algorithms (GA) are

commonly used in hardware partitioning [She94] aid
have been in use for a decade or more [Bha94].
Hardware partitioning provides a means for breaking a
system design up into smaller, more manageable pieces
based primarily on the number of communication
channels between the pieces. Hardware partitioning is
not limited to one level of design abstraction or even
application area. It can be used to facilitate design
packaging [Bha94], design layout [Bha94], simulation
and test [Cha94], Rapid Prototyping [Cha94], and logic
minimization [Con94].

Given an initial partitioning of a system into
two halves, iterative techniques move one circuit
component (node), or pairs of nodes, between the
partitions in an effort to minimize a single constraint or
a pair of constraints. At the core of these algorithms is
the manner in which they select the "best node" within
the system graph to move between partitions. These
techniques are a natural extension for HW/SW
CoSynthesis and are the core iterative technique of
many CoDesign or CoSynthesis approaches [Ben93]
[Car96] [Gaj94] [Gup93] [Hen96] [Yeh95].

In the HW/SW CoSynthesis context, the
hardware partitions become software and hardware
partitions respectively. The movement of system nodes
between the two is accomplished by rebinding the
node's physical implementation from hardware to
software or vice-versa. However, while cutset
minimization remains a meaningful design constraint,
area balancing does not. Further, one of the COMET
project's goals is to facilitate additional design
constraints in the CoSynthesis process. The iterative
improvement algorithms are limited by their ability to
readily add additional design constraints due to their
manner of selecting the "best node" to move between
partitions.

The two most common hardware partitioning
algorithms differ in how they select the "best node" to
move. The Hdducia-Matheyses method (FM) [She94]
for hardware partitioning starts from an initial
partitioning of the system graph. It proceeds by rank
ordering all the tasks in the graph based on how moving
a task from one chip to the other impacts the overall
inter-chip communication (cutset). Next, the rank
ordered list is stepped through and the algorithm selects
the first task from the list that reduces the cutset and
does not violate a predetermined size balance (usually
set at 40-60%) between the two chips. This task is then
moved to the other partition and the ranked list is
updated. This process repeats until all tasks have been
moved. The history of all task moves is examined to
find the point in the process where the cutset is
minimized.

73

The Ratio Cut method [Wei91] [Cha94]
evaluates the tasks based on the following equation

WA' ~ 2*16*2*. j€A'C'J

'AA'
R"'=\\A*\A\)

where A and A' are the two hardware partitions and C is
the cutset between the partitions. This equation takes
into account the number of communication lines and
the relative sizes of the two partitions. Once all the
tasks have been evaluated, the task with the smallest
value, R, is selected for movement

The FM method may be extended for
additional constraints, but either each constraint must be
expressed as a range or the task ranking must be based
on an equation that incorporates the results of the
constraint evaluations as a simple sum. The first
method is imprecise; the second mixes incomparable
attributes. The Ratio Cut method suffers from the same
restrictions.

Our algorithm improves on the iterative
improvement technique by selecting the "best node" for
rebinding rather than the first node that is acceptable, as
well as allowing additional constraints to be added easily
to the evaluation process. Our work is primarily
influenced by techniques from hardware partitioning, but
we have taken an approach similar to that of the
DESTINATION project [Mar96] for assigning tasks to
processors in complex computer systems. They
consider multiple constraints with user-defined weights
combined into a single objective function, similar to
our approach.

2.2 CoSynthesis Algorithm

The new algorithm, called SCOREBOARD,
has its roots in the FM method. Our algorithm
maintains separate, rank-ordered lists for each node that
may be rebound for each constraint specified by the
system specification. Each constraint specifies the
scalar value of one dimension of a ranking vector for
that node. The "best node" to move is selected by
choosing the node with the smallest vector from the set
of possible candidates to rebind. After preliminary
system definitions in Sections 2.2.1 and 2.2.2, the
algorithm is described in Section 2.2.3.

2.2.1 Component Database

During CoSynthesis, all nodes from the
system are bound to a specific implementation from a
database or library of hardware and software
components. The component library. L. consists of
components, ljjj, where:

j specifies the class or functionality of the library
component and

k specifies the particular implementation for the
component.

Using VHDL as the design language, VHDL
entity/architecture pairs represent the j's and k's.
Additionally, for each ljjc component there exists a set
of performance attributes, pi, and a set of functions, fj.
Sample pj's include size, cost, weight, and area.
Further, for a given j, all lj.k components implement
the same function, fj. The task of the CoSynthesis
Tool is to bind components from the library to nodes
within the system such that the functions (fj) of a
bound component (ljjc) match those of the node in the
system, and the aggregate system performance attributes
satisfy the system-level constraints levied by the
designer. The data model and flexible retrieval
mechanism are further described in Section 3.

2.2.2 System Definition

The input to the HW/SW CoSynthesis tool,
Sjn, is defined as a triple (G, C, B), where:

G is a dataflow hypergraph, denoted (V, E) where
V is the set of all nodes, vi, of the graph G,
E is the set of all edges, denoted as {(vi, K)},

where K is a subset of V.
C is a set of performance constraints, q, that

specify S's performance constraints. (Sample ci
are area, weight, power consumption, and time
delay.)

B is a binding set in which a binding, denoted (vi,
lj,k). associates one vi 6 V to one and only one
ijjt € L. Initially, B can be either the empty set
or a user-specified set of bindings.

Output from the HW/SW CoSynthesis tool, S0ut. is
defined similarly to Sin. T^e output system is a triple,
(G, A, B), where G and B are defined as above and

A is a set of system performance attributes. Each
ai € A is calculated by a specific constraint
analyzer in the SCOREBOARD tool and is
based either on the performance attributes, pi,
associated with components of the binding set,
B, and their satisfaction of the set of
performance constraints, C € Sin-

Associated with the constraints of the input system, C,
and the attributes of the output system. A, is a
constraint satisfaction function X(ci, aj). This function
tetermines whether or not the attribute ai of the output
system achieves the desired goal set by the input q. An

74

example is area; X(q, ai) compares the output system's

area (a simple sum of the area of the bound
components) with the designer's input area constraint.
The goal of HW/SW CoSynthesis is then

Given: Sin = (G, Cs, B), where B is initially either

the empty set or a user-specified set of bindings.
Create: Sout in which

V i, vi € V, 3 a binding (vi, lj,k) of vi to a
specific ljjc € L such that

V i, q € of C, and aj € A, the constraint
satisfaction function X(cj, ai) is satisfied.

2.2.3 Algorithm

Our approach improves on the iterative partitioning
technique by incorporating a three step evaluation
process for selecting the "best node" to move based on
user supplied constraints. Prior to algorithm execution,
the nodes of the system are initially bound to an
implementation (hardware or software) from the
component library. All nodes in the graph ate
unlocked. The algorithm, outlined in Figure 2, proceeds
as follows. Each constraint maintains a separate rank
ordered list. During the first step, denoted by [1] in
Figure 2, system nodes are inserted into each
constraint's ordered list based on the impact of the
node's potential movement (rebinding) on the overall
system. From the context of the node's score in these
ordered lists, constraint ranks are assigned to the nodes
during step [2]; these constraint ranks are the scalar
values for the node's rebinding vector. Finally, in step
[3], the rebinding vectors for the nodes are examined and
the node with the shortest vector (Euclidean norm) is
selected for rebinding. The node is bound to the
alternate implementation and locked, and the three steps
are repeated until no further node rebindings are
possible.

While (ULTasks * <(>) {
FOR EACH(CA) {

[1] CA->Score(ULTasks);
[2] CA->Bank (ULTasks); }
[3] Task2Rebind = SVector(ULTasks);

Bebind(Task2Rebind);
LTasks= LTasksu Task2Rebind;

 ULTasks = ULTasks - Task2Rebind;)
Where ULTasks = Unlocked Tasks

CA = Constraint Analyzer
LTasks = Locked Tasks
Svector = ShortestVector routine

Figure 2. SCOREBOARD Algorithm.

The components under consideration for
rebinding are initially retrieved from the database using
the constraints as part of a criteria-based search (a
query). Traditionally, each VHDL-based tool must
contain its own parser and mechanism for searching
VHDL design units. Our approach is to use a design
database and query language facilities rather than
incorporating this functionality in each tool within the
COMET environment

3. The Design Database

Many of the tools in the COMET
environment, such as tools for partitioning, synthesis,
and performance estimation, as well as in industrial
design environments, are VHDL-based. The general
goals of our design database are (1) that it should
"understand'' VHDL, and (2) allow flexible retrieval of
components specified in VHDL. We accomplish these
goals by defining a conceptual data model that is
implemented in our database system Odyssey [Ven95]
[Ven96a]. VHDL can be used as input or obtained as
output from the database, in addition to accessing data
through other interfaces. We define a general query
language that provides an interactive, stand-alone
interface, or can be used by tools to retrieve designs. la
aus way, we can interface with existing tools and
additionally allow greater flexibility for browsing and
retrieving components from design libraries. Users of
the database gain query and view facilities as well as
more flexible storage management than with traditional
file-based VHDL environments.

Others have developed specialized databases for
VLSI CAD [Sie89][Kim90][Nay91][Wag92], however,
our research is the first that we are aware of to use a
hardware description language as a database description
language. Wagner examines some of the issues in using
HDLs for database description [Wag95], but models
designs at a coarser granularity. Modeling at a finer
level of granularity permits queries on information
regarding entity ports that may be of prime interest in
the CoSynthesis process. For example, numerical
accuracy may be an additional constraint imposed by the
system specification; during system CoSynthesis,
tradeoffs can be made to achieve a particular system
numerical accuracy based on the bus widths of the
components used in the system.

Our approach to design data modeling and
retrieval is to parse and store VHDL source using our
conceptual model. The components can be directly
accessed through a query interface, either by designers or
tools. The instances can also be restored to VHDL so
that legacy tools may access designs placed in the
database regardless of their source.

75

fc= 0.0/+1.07 Vchi-o

VR = 0.583/ + 0.07 \VR | = 0.583

Vs =1.0/+ 0.866j \VS\ = 1.322
For this example, the reverser has the smallest

rebinding vector and is the best candidate to rebind for
this iteration of the algorithm. It is rebound and locked
(eliminating it from consideration in the future).
Finally, new system attribute values are calculated
(Figure 8) and the algorithm repeats until all nodes have
been rebound.

Cost
Sputter HW 1
Reverse SW 2
Compare HW 10

Area
1
10
10

23 16

Figure 8. System Attributes after Rebinding.

If the system constraints have not been met, the best
solution achieved by the algorithm can be used as the
initial bindings and the algorithm re-executed.

5. Results and Analysis

An object-oriented experimental
SCOREBOARD system has been prototyped using
C++ that accepts a VHDL entity/architecture pair and a
constraint description. The VHDL input describes the
system as a netlist of instantiated components while the
constraint description indicates which constraint
analyzers and goals to include in the SCOREBOARD
algorithm. Although instantiated components are a
subset of the possible VHDL language constructs that
can be used to model systems, our approach is
extensible to allow us to model any concurrent VHDL
task (processes, blocks, concurrent signal assignments,
procedure calls, etc.). Currently six primitive
constraints are supported: cutset minimization, cutset
maximum value, area minimization, area ma-yimiim
value, cost minimization, and cost maximum value.
The "minimization" constraint analyzers attempt to
minimize their particular system attribute; the
"maximum value" analyzers attempt to minimize a
system attribute until a maximum possible value is
achieved. Inheritance from a common constraint
analyzer base class facilitates the creation and
manipulation of additional analyzers within the
SCOREBOARD system. The output is a revised
VHDL architecture dividing the system into hardware
and software components and a VHDL configuration

body binding the instantiated components to library
elements. Experimental data has shown this algorithm
produces better two-constraint designs than existing
iterative improvement methods. Further the algorithm's
complexity is similar to existing hardware partitioning
techniques [She94], namely Ofa2), where n is the
number of nodes in the system.

The following two examples depict the
attributes of a synthesized system as the
SCOREBOARD algorithm iterates to completion.
Each example was generated from the same input
system, an ISCAS 85 benchmark [ISC85], consisting
of 1350 nodes. In the first example, the
SCOREBOARD algorithm had three goals: minimize
the system cutset, minimize the system area, and
balance the respective sizes of the HW and SW
partitions. In practice, the third goal is of little value in
a HW/SW CoSynthesis environment It is included
here to depict a 3-constraint example and as a further
indication of the capability of the algorithm over other
partitioning methods. The first two constraints, cutset
and area minimization, are plotted in Figure 9. The x-
axis shows a history of the iterative rebindings for
cutset and area. Each step along the x-axis is one
iteration of the algorithm. If the constraints of interest
are cutset and area, then the optimal point is
approximately around 700. Figure 10 shows the
history of rebindings with respect to area balance
between hardware and software as well as total area.
Although this consideration is artificial in CoSynthesis,
it does demonstrate how a third constraint can easily be
accommodated in our approach. The balance constraint,
as a percentage of each partition's contribution to the
whole, is in Figure 10.

Figure 9. SCOREBOARD Cutset and Area.

Figure 10. SCOREBOARD Area Balance.

In the second example, a fourth constraint cost
minimization, was added to the analysis of the same

76

system to illustrate the algorithm's scalability. This
constraint adds another dimension to the rebinding
vector. Results are presented in Figure 11, Figure 12,
and Figure 13. It is apparent by examining minimum
values achieved for cutset and area balance in example 2
that a rebinding that was appropriate in the first
example is no longer suitable in the second when the
additional constraint is considered.

Figure 11. SCOREBOARD Cutset and Area.

Figure 12. SCOREBOARD Cost and Cutset.

Figure 13. SCOREBOARD Area Balance.

6. Conclusions and Future Work

Conclusions and issues for future work are
discussed below.

6.1 Conclusions

The CoSynthesis Tool analyzes candidate
solutions and determines the best assignment of
resources to hardware and software using an iterative
binding algorithm. Our algorithm maintains separate,
rank-ordered constraint lists of system nodes that may
be rebound for each constraint in the system
specification. Our CoSynthesis tool improves on
hardware partitioning techniques by selecting the best
node for rebinding based on its rebinding vector rather
than the first node that is acceptable and allowing
additional constraints to be added easily to the
evaluation process.

We have proposed and implemented a data
model that stores designs described in VHDL and

interfaces with legacy tools (VHDL as file input/output)
and new state-of-the-art EDA tools (e.g., CoDesign and
CoSynthesis tools) to allow design space exploration
via criteria-based searching. The contribution is that
tools do not have to be scanners, parsers, and query
evaluators; designers and tools can continue to work
with a widely-used modeling language, and reap the
benefits of flexible retrieval.

6.2 Future Work

Future research will cover a broad range of
both SCOREBOARD and database refinements. Near-
term efforts will formally define and characterize the
SCOREBOARD algorithm and an analysis of the
quality of the synthesized design. This includes the
evaluation of more realistic constraint analyzers and
their impact both on the design process and the
algorithm. Allowing user-defined constraint weighting
to the scalar values of the rebinding vector is an
interesting capability. Additionally, the output format
will be refined such that the output will include a
revised VHDL architecture containing instantiated
components representing the hardware and software
partitions. The software partitions would be represented
as instantiated CPUs and memory executing the
software.

Further research could address the granularity of
HW/SW CoSynthesis by treating sequential statements
of VHDL processes as individual nodes. Designs that
define a system's functionality at a more abstract,
algorithmic level are not supported in the current
version of the algorithm's implementation. Finally,
scheduling and resource sharing would greatly aid the
HW/SW CoSynthesis effort in that duplicate tasks
would not be replicated in the system design.

Areas for future database research include
investigation of query optimization and data integration.
Data sharing is facilitated since different
producers/consumers of design data can use the common
database. Data exchange and integration can also be
facilitated for other EDA data formats and languages.
We have investigated interchange issues for VHDL and
the CAD Framework Initiative Design Representation
model [Ven96b]. Formats such as SDF [SDF95] fa-
timing delay information pose additional challenges in
this area [Dav96].

7. References.

[Ben93] T. Benner, R. Ernst, and J. Henkel. "Hardware-
Software Cosynthesis for Microcontrollers," IEEE Design
and Test, Vol. 10, No. 4, December 1993.

[Bha94] D. Bhatia, Physical Design Automation Course
Notes. University of Cincinnati, 1994.

77

[Car96] C. Carreras, J. Lopez, M. Lopez, C. Delgado-
Kloos, N. Martinez, and L. Sanchez. "A Co-Design
Methodology Based on Formal Specification and High-
level Estimation," Fourth International Workshop on
Hardware/Software CoDesign, p.28.
[Cha94] P. K. Chan, M. Schalg, and J. Y. Zien. "Spectral

K-Way Ratio-Cut Partitioning and Clustering," IEEE
Trans. On Computer-Aided Design, Vol. 13, No. 9,
September 1994, pp. 1088-1095.

[Con94] J. Cong, Z. Li, and R. Bagrodia. "Acyclic Multi-
Way Partitioning of Boolean Networks," Proceedings of
the 31st ACM/IEEE Design Automation Conference, pp.
670-675.

[Dav96] KC. Davis, S. Venkatesan, and L.M.L.
Delcambre. "Sharing Electronic Design Data Via Semantic
Spaces," submitted, 1996.

[Gaj94] D. Gajski, F. Vahid, S. Narayan, and J. Gong,
Specification and Design of Embedded Systems, Prentice-
Hall, Inc, Englewood Cliffs. NJ, 1994.

[Gup93] R. K. Gupta, "Co-Synthesis of
Hardware/Software for Digital Embedded Systems," PhD
Dissertation, Stanford University, 1993.

[Hen96] J. Henkel and R. Ernst. "The Interplay of Run-
Time Estimation and Granularity in HW/SW Partitioning,"
Fourth International Workshop on HardwarelSoftare
CoDesign, p.52.

[ISC85] Inter. Society on Circuits and Systems, 1985.

[Keu94] K. Keutzer, "Hardware-Software Co-Design and
ESDA," Proc. of 31st Design Automation Conference, pp.
435-436. 1994.

[Kim90] W. Kim, J. Banerjee, H.-T. Chou, and J.F. Garza,
"Object-oriented Database Support for CAD," Computer
Aided Design, Vol. 22, No. 8, October 1990, pp. 469-479.

[Mar96] T. Marlowe, A. Stoyenko, P. Laplante, R. Daita,
C. Amaro, C. Nguyen, and S. Howelll, "Multiple-Goal
Objective Functions for Optimization of Task Assignment
in Complex Computer Systems," Control Engineering
Practice, Vol. 4 No. 2, 1996. pp. 251-256.

[Mil95] R. Miller and H. Carter, "Hardware/Software
Partitioning in COMET," Proceedings of the COMET
Project Review Meeting, presentation slides, 1995.

[Nay91] TJC Nayak, AJL Majumdar, A. Basu, and S.
Sarkar, "VLODS: A VLSI Object Oriented Database
System," Information Systems, Vol. 16, No. 1, 1991, pp.
73-96.

[SDF95] Standard Delay Format Specification, Version
3.0. Open Verflog International, Los Gatos, CA 95032,
May 1995.

[She94] N. Sherwani, Algorithms for VLSI Physical
Design Automation, Kluwer Academic Publishers, Norwell,
Mass, Second Printing 1994.

[Sie89] E. Siepmann and G. Zimmermann, "Object-
Oriented Datamodel for the VLSI Design System
PLAYOUT," Proc. of the 26th ACM/IEEE Design
Automation Conference, Las Vegas, NV, 1989, pp. 814-
817.

[Vem94] R. Vemuri, H. Carter, and P. Alexander, "Board
and MCM Level Synthesis for Embedded Systems in the
COMET Cosynthesis Environment," Proceedings of the
First Annual RASSP Conference, Arlington, VA August
1994, pp. 124-133.

[Ven94] S. Venkatesan and KC. Davis, "A Data Model
for VHDL Databases," VHDL International Users Forum
Spring-94, Oakland, CA, May 1994, IEEE Computer
Society Press, pp. 173-182.

[Ven95] S. Venkatesan and KC. Davis, "Odyssey: An
Electronic Design Automation Database," Proc. of the 2nd
International Conference on Applications of Databases,
Santa Clara, CA, December 1995, pp. 147-157.

[Ven96a] S. Venkatesan, "Database Modeling for
Electronic Design Automation Environments," Ph.D.
Dissertation, Electrical and Computer Engineering and
Computer Science Department, University of Cincinnati,
Cincinnati, OH 45221-0030, January, 1996.

[Ven96b] S. Venkatesan and KC. Davis, "A Meta-model
and Semantic Mapping Methodology for Hardware Design
Data Management," Journal of Integrated Computer-Aided
Engineering, Vol. 3, No. 1, January 1996.

[Ven96c] S. Venkatesan and KC. Davis, "Flexible
Component Retrieval for Co-Design," submitted, 1996.

[Wag92] F.R. Wagner, L.G. Golendziner, J. Lacombe, and
A. H. Viegas de Lima, "Design Version Management in the
STAR Framework," IFIP92, edited by M. Newman and T.
Rhyne, Elsevier Science Publishers B.V. (North-Holland),
March 1992.

[Wag95] F.R. Wagner, "Design Management
Requirements for Hardware Description Languages,"
Proceedings EURO VHDL 95,1995.

[Wei91] Y.C. Wei and C.K. Cheng, "Ratio Cut
Partitioning for Hierarchical Designs," Transactions on
Computer-Aided Design, Vol. 10, No. 7, July 1991, pp.
911-921.

[Yeh95] C. Yeh, C. Cheng, and T. Lin, "Optimization by
Iterative Improvement An Experimental Evaluation on
Two-Way Partitioning", IEEE Trans. On Computer-Aided
Design of Integrated Circuits and Systems, Vol. 14, No. 2,
February 1995, pp. 145-153.

78

APPENDIX F:

A Retiming Based Relaxation Heuristic for

Resource-Constrained Loop Pipelining *

Vinoo Srinivasan and Ranga Vemurfl

Laboratory for Digital Design Environments
Department of ECECS

P.O. Box 210030
University of Cincinnati

Cincinnati, OH 45221-0030

'This work was partially supported by the ARPA RASSP program and monitored by the Wright Lab, US-AF under

contract number F33615-93-C-1316 and ARPA HPCC program monitored by the FBI under contract number J-FBI-93-116

'Author for Correspondence, (513)-556-4784 (Voice), (513)-556-7326 (FAX), Ranga.Vemuri@UC.EDU

79
A Retiming Based Relaxation Heuristic for Resource-Constrained

Loop Pipelining.

Abstract

This paper presents a fast and efficient heuristic for pipelining a loop under resource-constraints. The loop

is represented as a dependence graph, G, whose nodes are operations that are bound to available resources

and edges denote the data dependencies between the operations. The data dependencies restrict the degree

of parallelism that can be achieved while scheduling the graph. We propose a fast retiming based graph

transformation technique which relaxes the data dependencies in the graph while maintaining functional

equivalence. Relaxing data dependencies provides more flexibility for the scheduler to schedule operations,

thereby leading to faster throughput. Our objective is to obtain a retimed graph which when scheduled

achieves an optimal/near-optimal pipelined steady state throughput. A detailed algorithm is presented to

solve the problem. We provide results that illustrate the effectiveness of our algorithm.

80

2 Definitions and Terminology

2.1 Specification Model

The target architecture model for our retiming framework consists of a resource set 71 = {Rx, ■ • -,Rn}.

For a given operation n, t(n)n is the execution time for the operation n on the resource R G 71. If the

operation n cannot be executed on the resource R then t(n)n = oo. The loop body is represented by a

Dependency Graph. We assume that the graph is executed several times corresponding to the iterative

computations of the loop, involving varying data sets over time. Our loop representation is an extension

of that in UNRET [9] and is similar to the signal processing data flow graph representation in [19].

Definition 2.1 A dependence graph (DG) is a directed graph denoted by a 5-tuple, VQ = (V,E,\,6,ß).

V is the set of nodes representing the operations in the loop. E is the set of directed edges corresponding

to the dependencies. A : V H+ Af is a mapping which assigns an iteration index to each node in the DG.

6 : E I-* J\f is a mapping which assigns an non-negative integer deiay value to all the edges in the DG.

ß : V I-* 71 is a binding of each node to a resource. O

Iteration index (A): Since the DG represents an iterative algorithm, each iteration of the DG execution

invokes all the operations in the graph once. Thus if the DG is executed over N iterations, then each node

v € V has iV instances vi, vi • • -ujv-i, VJV where V{ is that instance of the node v corresponding to the ith

iteration of the DG. The subscript i in V{ is the iteration index (A).

Dependency delay (8): Edges in the DG represent data dependencies. A delay of riD on an edge is

equivalent to having n delay units on that edge. An edge uQ —v v0 (an edge from node UQ to node VQ with

a k delay units) implies data dependence from instance uc to instance vc+k, for c > 0. In general an edge

Ui —► Vj implies data dependence from instance u,-+c to Uj+i-+c, for c > 0.

Depending on the level of granularity, nodes in the DG can range from simple operations like multiplica-

tions and additions to complex macro operations like fast Fourier transforms and matrix multiplications.

Correspondingly, the resources can range from simple multipliers and adders to off-the-shelf microproces-

sors and FPGAs. In the rest of this paper we will use the word task synonymous with nodes and operations.

A DG is considered iegai only if the following three conditions are satisfied:

• Vu 6 V : \(u) > 0 C1)

• V u — v e E : S(u -+ v) > 0 (2)

• V cycles c € G : 6(c) > 0, where 6(c) = J^ <5(u — v) (3)
u—'v € c

The condition (1) does not permit nodes with negative iteration indices, (2) forces all edges to have non-

negative delays and (3) eliminates the existence of any cycle with zero or negative delay. An Initial DG is a

DG such that Vi> € V : X(v) = 0. Dependencies between task instances belonging to the same steady state

execution are called local dependencies while those between task instances of different steady states are

called global dependencies. All edges with 6(e) = 0 are called local edges and denote local dependencies,

while edges with 6(e) > 0 are called global edges and denote global dependencies.

81

2.2 Scheduling a DG

Given a dependence graph G = (V,E,X,S,ß), we define the set E\ = {e G E : 5(e) = 0} to be the set

of local dependencies. Only the local dependencies affect the schedulability of G. A node v G V is a head

node if and only if, there exists no node u such that u -* v € J5j. A node u 6 V is a tail node if and only

if, there exists no node w such that v —>• w G £/. For any node u £ V, the execution time for that node

when executed on the resource to which it is bound (ß{u)) is called latency of that node, l(u). For any

path u ~* v G Ei (path involving only the edges in Ei), the latency of the path, l(u ~> v), is equal to the

sum of latencies of the nodes that belong to the path. Mathematically,

V u G V : l(u) = *(«)/?(«)

Vtivt6£|:I(i(^ti)= 53 *(n) (4)

A path, p € Ei, is a critical path if for all paths p' G Ei : /(p) > /(?')• CT£ (Critical Path Latency) denotes

the latency of the critical path in the dependence graph.

Definition 2.2 : S(G) (Schedule of (?)

A schedule of a the graph G = (V, E, A, 6, ß) is a mapping 5 : V ^ Ar such that:

V(u -f «) G £/ : 5(u) > 5(tt) + /(u) °

The schedule of a graph, 5(G) - definition 2.2, is an assignment of start times for the execution of all the

tasks in the graph, such that the local data dependencies are not violated. The Initiation Interval (II) of

a loop is the time interval between consecutive executions of its steady state. Given a schedule of a loop,

the initiation interval of the loop for that schedule, IIS, is the difference between the time at which all

scheduled tasks finished execution and the earliest time at which any task was scheduled.

IIS 4- max (Slv) + l(u)) - min S(u) (5)

Since all the tasks in the critical path have to be scheduled, for any schedule S(G), IIs > CPL.

2.3 Theoretical bounds on Initiation Interval

It is clear that CPL poses a bound on the the II of the graph. The resource constraints and the recurrences

present in the DG also restrict the II of the steady state [19, 12, 9]. Consider a DG with k multiplication

operations, and a resource set with n multipliers, then, assuming multiplication takes unit time, it will take

at least \k/n\ time units to schedule all the multiplication operations. The maximum of such time bounds

over all resource types is the Minimum Initiation Interval (Mil) due to resource constraint, represented as

Mllres. In the presence of a recurrence r in the DG, the steady state execution time is lower bounded by

\l(r)/6(r)] time units to assure proper execution of the recurrence. The maximum of such bounds over all

recurrences in the graph is the Mil due to recurrences, represented as MIIrec- Mathematically,

MIITes = max V":'W=*' ; MIIrec = {
Ri€7l rii

0 if there is no recurrence

TeG S(r)
max -T7-7 otherwise

82

where Ri is a specific resource type from the resource set TZ and n2- is number of such resources available.

r is a recurrence in the DG. l(r) is the sum of the latencies of all the nodes in r and 6(r) is sum of the

delays of all the edges in r.

Definition 2.3 The Minimum Initiation Interval (MIIQ) achievable by any schedule for a given

graph is the maximum of the two lower bounds discussed above.

IIS > Mile = max{MIITes, MIIrec) D

2.4 Retiming the Dependence Graph

Definition 2.4 : r(G) (Retiming of a dependence graph G)

The retiming operation transforms the graph G = (V, E, A,<5,/3) into a new graph Gr = (V,E,\r,Sr,ß),

such that:

V(u -+ v) € E : ST(u -> v) - 6(u — v) = (Ar(u) - A(t*)) - (Ar(u) - X(v)) a

A retiming operation is legal if it always transforms a legal dependence graph G to a retimed graph GT

which is also legal. Recollect that a legal DG is one which satisfies conditions (1), (2), and (3). In the rest

of our discussion we restrict ourselves to legal retiming operations. If Gr is a retimed graph of G derived

by a legal retime operation, then GT is functionally equivalent to G [20]. The retiming operation does not

change the Mil of a graph. However, retiming may introduce delays on local edges thereby eliminating

local dependencies. Eliminating local edges that belong to the critical path may reduce the CPL, which

might lead to faster schedules.

Figure 1 shows an example of how retiming is used to generate pipelined schedules with better throughput.

The DG has four tasks A,B,C and D and two resources Rl and R2. Tasks .4, C are bound to Rl and

tasks B, D are bound to R2. For simplicity we assume that all four tasks take unit time to execute. We see

that the schedule-for the original graph tasks 3 cycles per iteration of the loop (II = 3) while the retimed

graph has an II of 2 cycles for the steady state. Also notice that after retiming we achieve a pipelined

schedule (Figure 1-b) while the schedule produced for the initial graph is non-pipelined (Figure 1-a).

3 Resource-Constrained Loop Pipelining

In this section we present our algorithm that attempts to generate an optimal resource-constrained pipelined

schedule for a given dependence graph representing a loop. We consider a pipelined schedule optimal if

the steady state initiation interval of the schedule (I Is) is equal to the minimum initiation interval of the

loop (MIIQ) as given in definition 2.3. Given the initial graph of the loop we try to produce the retimed

graph which when scheduled achieves the best possible steady state throughput.

Since we want to achieve the best throughput, the aim of the retiming algorithm must be to eliminate as

many local dependencies as possible. Figure 2 shows two examples where retiming is used to eliminate

local dependencies in a DG. The underlying retiming operation used in Figure 2 is the one referred to

83

&
ID

lime (cycles)

Bo

Res. 1

Res 2

\ c. Pi
B» *>.

loop body

A, c.
£-!&£

»l Di

loop body

Ao-l Cn-1

^B- D.-1

(a) - Initial DG and its schedule

rf)°
ID

..ElSES.,!,
steady state ^.cE!2.??-e..,j

c,
Res. I

Res 2

Aw c„,
B, D.

*.l c„
ü*-""»^ s^*

B>2 o«
B~, »1

time (cycles)
loop body

(b) - Equivalent Retimed DG and its pipelined schedule

Figure 1: An Example of Retiming to generate pipelined schedules

as nodal transfer in [12], which is same as dependence retiming transformation presented in [9]. We shall

call it the the function shift-node. For a given node v € V, and for a positive integer k the function

shift.node(v,k) performs the following steps:

. Xr(v) *- \(v) + k

• \/(u -+ v) € E : Sr(u -*■ v) — 6(u -* v) - k

• V(v -*w) € E : Sr(v -*• tw) *- 6(v ->■ w) + k

The shift.node(v, k) function transforms a given DG into an equivalent retimed DG satisfying definition

2.4. However, shift.node(v, k) will be a legal retiming operation only if for all edges u -► v € -E : S(u -*

u) > fc, otherwise edges with negative delays will be created. A X>G is defined to be systolic if it has no

local dependencies [21], i.e. Ve G E : (5(e) > 0. For a systolic £G it is trivially possible to obtain a schedule

© © © © ®
(b) • Example 2

Figure 2: Retiming Transformations to Eliminate Local Dependencies

(a) - Example I

84

Algorithm 3.1 (Retiming an Acyclic DG)

G = (V,E,X,6,ß) : The Initial DG to be retimed. > The initial graph is acyclic

procedure retime.acyclicJ)G(G)

begin

while (3 head node u eV such that (3 u -* v € E : 6(u -=■ v) = 0)) do

shift.node(u, 1);

return G

end

Figure 3: Retiming a cyclic DG

that is optimal with I Is equal to MIITes.

If the initial graph has no cycles then it is always possible to introduce positive delays on all its edges

and achieve the optimal throughput. Algorithm 3.1 is simple procedure which eliminates all local edges in

an acyclic DG, just by making calls to the shiftjnodeQ function. Figure 2-(b) illustrates the flow of this

algorithm when applied to a acyclic DG. In Algorithm 3.1, since the node u is a head node, we do not

create any edges with negative delays. In the case of DGs with cycles, it is not always possible to eliminate

all local edges. Consider the initial cyclic DG in Figure 3. Any legal retimed graph of the initial graph

always has two local data dependencies. In more general terms it can be easily proved that for all cycles

c in the graph, 6(c) (sum of the delays of the edges in the cycle) does not change with retiming. Thus

for DGs with cyclic dependencies, there are cases when we can only shift around delays (i.e. reducing the

delay value on certain edges and adding it to others) rather than creating new delays.

Although for any cycle, c, in the DG, 6(c) is constant over retiming, the number of positive delay edges in

Figure 4: Relaxing a cyclic DG

85

Initial Dependence Graph, G

Phasel
Refer G and Generate

G'in.MRGc

■ i Phase IT

Retime and Reschedule
Algorithm

Produce Best Schedule

Figure 5: Resource-constrained Loop Pipelining Methodology

obtain the pipelined throughput. If the throughput achieved by the scheduler is equal to MIIQ, then the

optimal steady state throughput has been achieved and we do not proceed to phase two. We use a simple

list-scheduler [22] with mobility of the nodes as the primary priority. In the second phase we pass G', the

output of phase one, to a retime and schedule algorithm. We now present the details of both the phases

of our algorithm.

3.1.1 Phase I Algorithm

In the first phase we try to transform the given initial graph into an MRG. Our approach is presented

in Algorithm 3.2. Before invoking the algorithm we identify the set of edges in the DG which belong to

recurrences. A directed edge from node u to node v belongs to the recurrence set, 1Z, if there exists a

directed path from v to u (i.e. there is a cycle involving the edge u -* v). Mathematically, 1Z = {u -*■
v G E | 3 path v ^ u). Edges that belong to H are called recurrence edges and the rest are called

non-recurrence edges. The procedure relax-DG{) in Algorithm 3.2 has two while loops. The first while

loop transforms all non-recurrence local edges into global edges. The second while loop tries to introduce

delays on local edges that belong to 1Z.

Relaxing non-recurrence edges: This is done in the first while loop of the algorithm 3.2. Consider an

zero delay edge u — v that does no belong to any recurrence. We follow a simple approach to introduce

a unit delay on this edge without decrementing existing delays on any other edge of the graph. For all

nodes, n, belonging to the set that includes the node u and all nodes from which u can be reached, perform

node.shift(n, 1). The above retiming will introduce an additional unit delay on all out edges from u

86

Algorithm 3.2 (Phase I - Relaxing a DG)

C = (V, E, A, 6, ß) : The Initial DG to be relaxed until it is a MRG.

1Z : The set of recurrence edges that belong to E

procedure relax J)G{G)

begin

fc> Eliminate all non-recurrence local edges

while (3(ti -*v)€E s.t. (5{u -* v) = 0) A (u — v <£ V.)) do

begin

for each n G {{u} U {k \ 3 a path k ~> u}) do

shift-node(n, 1)

end while

> Now try to eliminate local edges belonging to recurrences.

while ([u — v, shift] «— get_next_reIaxable_edge(G)) do > loops until function returns NULL

begin

shift.node(u, shift)

for each edge t —> u £ H do

begin

if {6(t — u) < 1) then

d *- l-6(t-*v)

for each n G ({t} U {k \ 3 a path k ~»t}) do

shift.node(n, d)

end if

end for

end while

end

(excluding the self loop), while not introducing any new local dependency in the graph. Thus the edge

u —*■ v is no longer a local edge.

Figure 6 illustrates non-recurrence edge relaxing, (a) is the initial graph. The non-recurrence zero delay

edge B -*• D is selected to be relaxed. A,C are the nodes from which B can be reached. Hence, the

shift.node(n, 1) function is performed on nodes B, A and C. (b) is the graph obtained after all shift-nodes

are performed. Notice that for all edges from one of the three nodes (A, B, C) to any of the remaining

nodes, the delay on the edge is increased by one unit. So in (b) we see that delays are introduced on the

edges B -*• D and C -* D. We continue this procedure until all local dependencies are eliminated. Figure

6-(c) shows the graph obtained after all the local dependencies are eliminated.

Relaxing recurrence edges: This is done in the second while loop of the algorithm 3.2. Consider a

zero delay recurrence edge u -* v in the graph. The approach taken for non-recurrence edge will not work

here because u is reachable from itself. However if all recurrence edges incident on u (excluding self loop)

have delay > kD units, for some positive integer k, then we can perform shift.node(u,k - 1). This will

introduce a positive delay on the recurrence edge u -* v and all recurrence edges that are incident on u will

remain positive. However non-recurrence edges incident on u may be transformed into local dependencies.

These new local dependencies can be eliminated through the approach previously discussed. As stated

87

Algorithm 3.3 (Select an Edge to Relax)

G = (V,E,X,6,ß) : A node has to be selected from then input graph G

selected[e] : selected is a global boolean array. selected[e] denotes if the edge e has

already been selected or not. Initially all edges are marked unselected.

11 : The set of recurrence edges that belong to E

function getjiext-relaxable.edge(G) : (u -*• v : E, shift : int)

begin
while (3 edge (u-*v)€K such that (not selected[u -»■ v]) A (6(u -+ v) = 0))

E' - {(* -+ u) G 111 t ± u}

shift *- min 6(e)
e€E'

if (shift > 1) then

selected[u —* v] <— 1

return (u —► v, shift — 1)

end if

end while

return NULL

end

earlier the sum of the delays on any recurrence is constant. So, essentially, we select nodes belonging to

recurrences that have excess delays on all recurrence edges incident on them and redistribute the excess

delay to their outgoing edges.

The function getjiext-relaxa.ble-edge(G) selects the candidate recurrence edge to be relaxed next. The

function also returns an integer value, shift, by which the selected edge can be relaxed. The selection

function is shown in algorithm 3.3. This function selects nodes belonging to recurrences such that all

recurrence edges (excluding self loops) incident on it have a delay greater than one. If no such unselected

node exists then it returns null. The integer value, shift, returned by this function is equal to one less than

the least delay on the recurrence edges mentioned above. For each edge, u -+ v, selected by the selection

function, shift.node(u, shift) is performed. Thus delays on all outgoing edges of u win be increased by

shift and delays on all edges incident on u will be decreased by shift. This will eliminate the local

dependency u-*v. Due to way shift was computed, positive delays are maintained on all recurrence edges

incident on u. The only local dependencies that may be created are on the non-recurrence edges incident

on u. However using the technique discussed before to relax non-recurrence local dependencies, these new

local edges are eliminated.

Figure 7 shows an example of relaxing recurrence edges. In Figure 7-(a) the local recurrence edge B — C

is chosen to be relaxed and the value of shift is 2 (the excess delay on the edge D -* B). shift.node(B,2)

is performed to distribute the excess delay to the local node B -+ C. Notice that in Figure 7-(b) the edge

D -f B now has a unit delay. In order to maintain the unit delay on the non-recurrence edge A — B, a

shift.node(A,2) is performed. The graph (b) is an MRG and so the selection function of Algorithm 3.3

returns null.

10

88

(a) - Initial DG (b) - Edge B->D is relaxed (c) - All non-recurrence
edges relaxed

Figure 6: Relaxing Non-Recurrence Edges

relax
edge B->C

(a) Initial DG (b) Edge B->C relaxed

Figure 7: Relaxing Recurrence Edges

3.1.2 Phase II Algorithm

The phase two algorithm is invoked if the MRG obtained after phase one does not produce a schedule

that achieves the optimal steady state throughput. Since the schedule is not optimal, the resources are

not fully utilized. There are gaps in the schedule where certain resources are idle. These gaps are created

due to presence of certain local data dependencies. We identify such dependencies and introduce delays on

them at the expense of introducing other local dependencies. The retimed graph is scheduled again and

the process is continued either until the optimal throughput is achieved or until all edges are tried. The

best throughput is reported if the optimal value is not achieved.

Figure 8 illustrates our phase two algorithm. The graph in (a) is the DG obtained after phase one. The

graph has four tasks. Tasks .4 and B are bound to the processing element 2 (PE2) and have execution

times of 40 and 60 cycles respectively. Tasks C and D are bound to the processing element 1 (PE1) and

have execution times of 50 and 45 cycles respectively. The MIIres is equal to 100 (max(60+40, 50+45)).

11

89

PI(45P

(ai - DC prior to Phase 2

GO

SO

100

120

140

160

180

200

FBI

- %
— "'rt ■■&•"■■.',\

—

— ;.'■;.%'*:<%

c,

50

- D,

45

cycle
time

£3 • Gap in ihe schedule
PE I unutiiized

Steady Stale
Throughputs 195 cycles

FBI re 2

<:,
..- so

D, "i.,

4S 40

*„,

60

PI (45)

(h)-DC after Phase 2

(c) ■ Schedule for the DC in (a)

[^ - Gap in the schedule
PE 2 unutilized

Steady Stale
Throughput = ISO cycles

<d) ■ SclieiUefttr ike DC in (h)

Figure 8: Illustration of the Phase 2 algorithm

There are two recurrences in (a) - A — B ->■ C ->■ A and A -*• B -+ D -* C -+ A. MIIrec is equal to

150 (max(150/l, 195/2)). Thus the JV/i7G for the DG is 150 (max(150,100)). Figure 8-(c) is the schedule

obtained for the graph in (a). The throughput obtained for (a) was 195 cycles. We notice that PEl is not

utilized for the first 100 cycles of the schedule, which is what we call gap in the schedule. The gap is created

due to the local dependency B -* C. The task C has to wait until task B completes execution. Hence,

local edge .B -* C is chosen to be relaxed. To create a delay on this edge, shift.node(B, 1) is invoked, but

since the edge A ->■ B is also a local edge, shift.node(A, 1) is in turn called. In general shift-nodeQ is

recursively invoked until a legal DG is obtained.

Figure 8-(b) is the DG obtained after the edge B -*■ C is relaxed. Notice that the edge C -*■ A is now

a local edge. The iteration indices of A and B are incremented by one. Figure 8-(d) is the schedule for

the retimed DG in (b). This schedule is a pipelined schedule representing the steady state execution of

the loop. The schedule achieves the optimal steady state throughput of 150 cycles per execution. If the

optimal solution were not achieved, the algorithm would identify the local edges causing gaps and continue

the relaxation process. A resource is considered aiive until the time the last task scheduled on it completes

execution. It is a critical resource if it is alive beyond the optimal schedule time of the steady state (MIIQ)-

Gaps on non critical resources are ignored. If there are more than one unselected local edges causing gaps,

then we choose one of them based on priorities such as criticality of the resource, gap size, and edges

belonging to the critical path.

UNRET [9] also uses a retime and reschedule approach. But, instead of looking for gaps in the schedule

like our phase 2 approach, it picks an unselected head node from the DG, performs shift-node on it and

reschedules the retimed DG. The process continues either until optimal throughput is achieved or until all

nodes are selected. The phase 2 approach we follow is efficient because each retiming move is dependent

on the feedback from the schedule produced, rather than arbitrarily choosing a head node as in [9]. The

main difference between our resource constrained loop-pipelining methodology, presented in Figure 5, and

that in [9, 11] is the lack of phase 1 in the later. The advantage of the relaxation scheme followed in phase

1 is that there may be no need to resort to the phase II algorithm because the relaxed graph obtained as

12

90

Example Num. of Num. of MIIa

Number Tasks Dependencies (cycles)

1 40 80 1282

2 50 150 1852

3 100 300 2788

4 100 500 3281

5 200 1000 6774

6 300 1500 8744

7 400 1600 12008

8 400 2000 13264

9 500 2000 15353

10 500 2500 15467

Table 1: Design Data for the Test Examples

the result of phase I produces the optimal schedule. Even in the case when phase II cannot be avoided,

the convergence time of phase II when preceded by phase I is usually much faster than just phase II alone

because in the former case the second phase starts off with as maximally relaxed graph. In the next section

we present results to justify the above claims.

4 Results

In this section we present results of our resource-constrained loop-pipelining methodology shown in Figure

5. We compare our algorithm against the retime and schedule scheme in UNRET [9]. We have implemented

all algorithms in C++ on a Sparc 5 Unix workstation running at 143Mhz clock. The reason why we chose

UNRET for our comparison is that the later has been compared against several known pipelining schemes

and proved effective in [9].

We have implemented a dependence graph generator that can produce synthetic graphs of varying com-

plexities. The generator takes a input the number of nodes, number of edges, number of resources available,

execution time range and maximum delay on any edge. Table 1 presents the details of the synthesized de-

pendence graphs generated that are used to study the efficiency of our methodology. To keep the scheduler

simple, we consider two resources like the example in Figure 8. Each task is mapped randomly to one of

the resources, and the execution time is randomly selected from the uniformly distributed interval [20; 100]

cycles. The maximum delay value on any edge is 3 delay units and the probability of an edge being a local

dependency is 0.8. All graphs generated are legal dependence graphs. Table 1 also shows the theoretical

bound on the initiation interval of any pipelined execution for all the ten test graphs.

Table 2 compares our loop-pipelining algorithm against that of UNRET for the 10 examples in Table 1.

Column 2 (C2) is the amount of execution time spent on Phase I of the algorithm, C3 is the time spent in

Phase II, and C4 is the total execution time. Column 6 is the time taken by retiming approach presented

in UNRET. All times are reported in milli seconds. Columns 5 and 7 are the cycle times of the fastest

13

91

Example

Two Phased Algorithm UNRET

Speedup Phase I Phase II Total Us Time Us
Number Time (ms) Time (ms) Time (ms) (cycles) (ms) (cycles) (times)

1 1.1 0 1.1 1282 43.8 1282 39

2 0.8 7.8 8.6 1852 184.3 1881 21

3 3.6 0 3.6 2788 215.0 2788 60

4 2.3 486.1 488.4 3519 894.5 3607 2

5 5.0 36.0 41.0 6774 1240.0 6774 30

6 7.9 45.7 53.6 8744 1195.1 8744 22

. 7 23.3 87.7 111.0 12008 4196.2 12008 38

8 13.3 60.1 73.4 13264 5236.8 13264 71

9 19.0 0 19.0 15353 2645.0 15353 139

10 21.1 394.0 415.1 15467 8123.0 15467 20

Table 2: Resource Constrained Loop Pipelining : Results

pipelined schedule produced by our approach and UNRET's approach respectively. The numbers in bold

indicate that the optimal throughput time was achieved. Our algorithms achieves the optimal throughput

for 9 of 10 examples. For example 4 both approaches failed to produce the optimal throughput.

The result we want to highlight in Table 2 is the speed up in the execution times. For the 10 examples,

on an average, our approach is about 44 times faster than that of UNRET. Only for example 4, where

both approaches fail to produce the optimal result, we do not see a substantial speed up. UNRET is slow

because of the time it spends in the scheduler. Each time a shift.node- -«peraiion is done, the graph is

rescheduled. As the size of the graph increases, scheduling becomes much slower. Our phase 2 algorithm

also uses a retime and reschedule approach like UNRET, but we differ in the way the graph is retimed.

The reason for the speed up is the presence of the relaxation algorithm of phase I. For examples 1, 3, and 9

phase II was not needed. For the remaining examples, although phase II was needed, it converged toward

the optimal solution much faster than UNRET. Thus, our approach is atleast as efficient UNRET in terms

of throughput achieved for a given loop, while at the same time it's execution time is several magnitudes

faster than the later.

5 Conclusion

This paper presented an efficient two phased algorithm for resource-constrained loop pipelining. Our algo-

rithm extensively uses retiming techniques [7] to generate pipelined schedules. The focus of our algorithm

was to achieve the best possible steady state throughput for a given loop while expending minimal com-

putation time. The effectiveness of our algorithm was illustrated through several synthetically generated

dependence graphs, representing loops of varying complexities. Results show that execution time of our

algorithm is much faster than the scheme in UNRET [9] while not sacrificing the quality of the steady state

14

~02 ,_,

throughput. Currently we axe applying the our loop-pipeling algorithm to a hardware/software codesign
framework to produce pipelined hardware-software codesins.

References

[1] K. Hwang, F.A. Briggs. Computer Architecture and Parallel Processing. The MIT press, Cambridge, Massachussets,

1984.

[2] M. Lam. "Software Pipeiing: An effective scheduling technique for VLIW machines". In Proc. of SIGPLAN, pages

318-328, June 1988.

[3] A. Aiken, A. Nicolau. "Perfect Pipelining: A new loop parallelization technique". In Lecture notes in Computer Science,

volume 300, pages 221-235, March 1988.

[4] R. Potasman, J. Lis, A. Nicolau, D. Gajski. "Percolation Based Synthesis". In Proc. ACM/IEEE Design Automation

Conference, pages 444-449, 1990.

[5] A. Aiken, A.Nicolau. "A Realistic Resource-Constrained Software Pipelining Algorithm". In Advances in Languages and

Compilers for Parallel Processing, pages 85-92, March 1996.

[6] B.R. Rau, CD. Glaeser. "Some scheduling techniques and an easily scheduable horizontal architecture for high perfor-

mance scientific computing". In Proc. of the 14th Annual Workshop on Microprogramming, pages 183-198, Oct. 1981.

[7] C.E. Leiserson, J.B. Saxe. "Retiming Synchronous Circuitry". In Algorithmica, pages 5-35, 6:5-35, 1991.

[8] M.C. Papefthymiou. "Understanding Retiming Through Maximum Average-Delay Cycles.". In Mathematical systems

theory., volume 27, 1994.

[9] F. Sanchez, J. Cortadella. "Resource-constrained software pipelining for high-level synthesis of DSP systems". In

Algorithms and Parallel VLSI Architectures III, pages 377-388, 1995.

[10] M. Potkonjak, J. Rabaey. "Optimizing Resource Utilization Using Transformations". In IEEE transactions on Computer-

Aided Design of Integrated Circuits and Systems, volume 13, March 1994.

[11] Fermzn Sanchez. "Loop Pipelining with Resource and Timing Constraints". PhD thesis, UPC. Universität Politecnica de

Catalunya, Spain, October 1995.

[12] V.K. Madisetti. VLSI Digital Signal Processors: An Introduction to Rapid Prototyping. IEEE Press, 1995.

[13] S. Huang, J. Rabaey. "Maximizing the throughput of high performance DSP applications using behavioral transforma-

tions". In Proceedings of EDAC-ETC-EUROASIC94, pages 25-40, March 1994. .

[14] M. Sheliga, N.L. Passos, E.H. Sha. "Fully Parallel Hardware/Software Codesign for Multi-dimensional DSP Applications".

In Proceedings of 4th International Workshop on Hardware/Software Codesign, pages 18-25, March 1996.

[15] N. Park, A.C. Parker. "Sehwa: A Software package for synthesis of pipelines from behavioral specifications ". In IEEE

Trans, on CAD, volume 7, pages 356-370, March 1988.

[16] C-T. Hwang, Y-C. Hsu, Y-L. Lin. "Scheduling for functional pipelining and loop winding". In Proc. Design Automation

Conference, pages 764-769, 1991.

[17] G. Goossens, J. Vandewalle, H.De Man. "Loop optimization in register-transfer scheduling for DSP systems". In Proc.

Design Automation Conference, pages 826-831, 1989.

[18] T-F. Lee, A. C-H. Wu, Y-L. Lin, D.D. Gajski. "A transformation method for loop folding". In IEEE Trans, on CAD,

pages 439-450, 1994.

[19] K. Parhi, D. Messerschmitt. "Static Rate Optimal Scheduling of Iterative Data-Flow Programs via Optimum Unfolding".

In IEEE Trans, on Computers, volume 40 n2. pages 178-195, February 1991.

[20] C.E. Liserson, J.B. Saxe. "Optimizing Synchronous systems". In Journal of VLSI an Computer Systems, volume 1 nl.

pages 41-67, Spring 1983.

[21] S.Y. Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs, NJ, 1988.

[22] G. De Micheli. Synthesis and Optimization of Digital Circuits. Mc Graw Hill, 1994.

15

APPENDIX G: ... 93
Multicomponent Partitioning for VLSI System Synthesis

Nand Kumar and Ranga Vemuri

Address for Correspondence:

Dr. Ranga Vemuri, Director
Laboratory for Digital Design Environments
Department of Electrical and Computer Engineering
813 Rhodes Hall; Mail Location 30
University of Cincinnati
Cincinnati, Ohio 45221-0030

Phone: (513)-556-4784
Fax: (513)-556-7326
Email: ranga.vemuri@uc.edu

This work is done at the University of Cincinnati and is supported in part by the Solid State Electronics Directorate of
the Wright Laboratory of the US Air Force under contract number F33615-91-C-1811 and by the Advanced Research
Projects Agency (ARPAESTO RASSP Program) monitored by the US Air Force Wright Labs under contract no.
F33615-93-C-1316

1 Introduction

Initial attempts at multicomponent synthesis involved carrying out high level synthesis and then par-
titioning the resultant design to realize a multichip design. High level synthesis converts a behavioral
specification of a digital system into an equivalent RTL design (composed of a data path and a finite state
controller; the data path is a composition of components selected from a register-level component library)
that meets a set of stated performance constraints. This RTL design is then partitioned onto multiple chips
to realize a multicomponent design. Recent efforts in system-level synthesis have led to the development
of high level synthesis systems that can produce multichip digital systems [18, 46, 10]. These systems,
however, do not consider the impact of packaging on high level synthesis and hence designs produced by
these systems cannot efficiently use available high performance packaging technology.

Recent and ongoing revolution in electronics packaging has resulted in many high performance packaging
technologies such as thin film multichip modules (MCMS). Packaging significantly impacts the performance
and cost of systems. High level synthesis systems can no longer target just single chip designs or multichip
designs without considering packaging technology. To make effective use of MCM technologies, high level
synthesis systems must generate multichip structures taking into account the impact of packaging on system
performance, heat, and cost.

Multicomponent Synthesis with Hierarchical Package Design is the process of high level synthesis targeting
multichip and/or multicomponent implementations of the input behavioral specification to take advantage
of available packaging technologies. Multicomponent synthesis and hierarchical package design is char-
acterized by simultaneous synthesis of: (1) multiple register-level designs that interact with each other
and together implement the function specified in the input behavioral specification; (2) a composition of
these designs into a hierarchical structural design; and (3) a mapping of these register level designs and
hierarchical structures onto efficient physical packages to realize a package hierarchy for the design.

Hierarchical RTL Partitioning and Package Design: Traditional partitioning and package design is re-
stricted to a single level. A design is partitioned onto multiple packages at a particular level. However,
digital designs occupy a hierarchy of packages from bare dies to boards (or backplanes and higher as
needed). Also, packages come in various sizes with differing area and pin capacities and dollar costs. Cost
effective packaging solutions for designs can be generated by carrying out hierarchical partitioning of the
input RTL description onto a specified package library.

Payne and van Cleemput [38] developed an automatic partitioning technique for logic gates in order to meet
gate and pin count constraints on chips. Beardslee et al [1] developed SLIP, an environment for system-
level interactive partitioning. SLIP provides routines for maintaining and modifying a design hierarchy.
These routines are used by partitioning algorithms to update and maintain design data. Saab and Rao
[43] proposed an evolution based approach for partitioning logic circuits. Their approach takes constraints
on the size of each part and number of pins. Also takes testable and critical nets into account during
partitioning. Testable nets are cut to make them observable and critical nets are not cut.

Resnick designed SPARTA [39] to evaluate RTL designs with a spreadsheet-like approach. SPARTA checks
for violation of area, power, and pin count constraints. Shih, Kuh, and Tsay [44] use a clustering step to
satisfy timing constraints before using the Kernighan-Lin algorithm to partition functional blocks into a
multicomponent design targeted to multichip modules (MCM). Vemuri applies genetic algorithms for parti-
tioning register level designs for MCMS [47, 51]. A comparison with simulated annealing based partitioning
is also presented.

Walker and Thomas [53] describe manual partitioning as part of design transformations in high level
synthesis. McFarland [25] uses a hierarchical clustering technique, based on a measure of similarity, in
partitioning behavioral hardware descriptions. These clustering algorithms are used in BUD [29] to perform
a part of the allocation and module binding phase in data path synthesis in DAA [28]. Lagnese and Thomas

95
use a multistage clustering technique to partition a behavioral specifications into multiple processes to
improve the quality of single chip designs [23, 24]. The approach shows significant area reductions in single
chip designs, but does not consider design constraints or multichip implementations. Gupta and De Micheli
[10] use the Kernighan-Lin and simulated annealing techniques for partitioning functional models while
satisfying area and timing constraints. Pin-sharing or area/delay characteristic of registers, multiplexers,
controllers, or wiring are not considered. Design constraints are not considered. Kucukcakar and Parker
[17,18] describe CHOP, a framework for interactive partitioning, in which the designer creates and modifies
partitions and CHOP evaluates the validity of each partition by searching for possible implementations
through predictions. Vahid and Gajski [46] describe partitioning at the algorithmic level. Clustering and
Kernighan-Lin algorithms are used in partitioning. A preliminary bit-slice synthesis of behavioral objects
in the design is performed prior to partitioning to generate performance characteristics of synthesized
behavioral objects. Operator sharing across concurrent blocks is not considered — each concurrent block
is synthesized separately and gets a set of dedicated hardware resources. During partitioning, as the
composition of the design changes, new performance characteristics are not generated.

We develop a generic hierarchical graph partitioning and packaging model for (1) multicomponent synthe-
sis with hierarchical package design and (2) hierarchical RTL partitioning and package design and propose
a generic hierarchical partitioning and package design algorithm to accomplish the tasks. We present a
generic input graph specification model for behavioral descriptions and RTL netlists (post high level syn-
thesis) and a model for packaging options. We, then, formulate the hierarchical partitioning and package
design problem and propose a solution. We, first, develop a mathematical model of the hierarchical parti-
tioning and package design problem and, then, map our problem domains, (1) multicomponent synthesis
with hierarchical package design and (2) partitioning register level designs onto a hierarchy of packages
(from a package library), onto the mathematical model. We, then, propose a solution to the hierarchical
partitioning and package design problem. We present experimental results for both approaches using our
hierarchical partitioning and package design algorithm for some examples. And, finally, we present a com-
parison between multicomponent synthesis and hierarchical RTL partitioning and discuss the validity and
applicability of our approach for modern designs and high performance packaging technologies.

2 Problem Formulation

An Example: Figure 1 shows an example graph. Consider the set of nodes of the graph, N = {ni, n-i, n3, n4, n{\.
We shall use this example to illustrate some definitions in the problem formulation. Though we present
the formulation for a generic graph, we discuss domain specific details for multicomponent synthesis and
RTL partitioning as we present definitions.

The problem is introduced incrementally. Definitions 2.1 and 2.2 introduce the concept of a hierarchical
k-level partition of a set. Definition 2.3 extends our notion of a k-level partition of a set to a k-level
partition of a graph. Definition 2.4 defines a set of package levels. Definition 2.5 outlines a model for
specifying package alternatives and their associated properties. Definition 2.6 shows the binding between
a k-level partition of a graph and a set of package alternatives. The performance attribute computations
are outlined in Definition 2.7.

Definition 2.1 A 1-level partition of a set A/" is a system, <S, of nonempty sets (called segments) such that
(a) S is a system of mutually disjoint sets, i.e., if C € S, D € <S, and C # D, then C H D = <p,
(b) the union of S is the whole set Af, i.e., \JS — H.

The set S = {si, $2,S3}, in Figure 1, defines a 1-level partition of N.
$1 = {nj.712}, 52 = {nz,n4}, and 33 = {n5}.

96

Ns{n1,n2,n3,n4,n5}

P1=S = {s1,s2,s3}

s1={n1,n2}

S2 = {n3,n4}

s3 = {n5}

P2 = {s11, »12,313}

s11a{s1}

s12 = {s2}

313 = {33}

P3 = {s21}

S21={s11,s12,s13}

Figure 1: An Example Graph and its k-level Partition

Definition 2.2 A k-level partition, V, of a set A/" is a set of 1-level partitions Pu P2,..., Pk such that
(a) for 1 < i < k - 1, Pi+1 is a 1-level partition of Pi,
(b) Pi is a 1-level partition of Af.

The 3-level partition of N (see Figure 1) is given by:
Pi = S = {s1,s2,sz},
?2 = {«li, 5i2,5i3}; sn = {$i}, 312 = {52}, and 313 = {53}, and
■^3 = {<S2l}; 52i = {5ii,3i2,3i3}.

We extend the notion of a k-level partition of a set to define the k-level partition of a graph G = (N, E),
where N is the set of nodes and E is the set of edges. In the case of multicomponent synthesis, the input
behavioral specification viewed as a process graph is the input graph, where N is the set of processes and
E is the set of communication signals. In the case of RTL partitioning, the graph is the input RTL netlist,
where N is the set of register level components and E is the set of interconnections between register level
components.

Definition 2.3 A k-level partition of a graph G = (N,E) is a k-level partition of N, where N is the set
of nodes and E is the set of edges.
(a) area of a node n 6 N is given by A(n),
(b) switching activity of a node n € N is given by H(n),
(c) clock speed of execution of a node n 6 N is given by T(n).

The performance attributes of nodes in the graph, A(n), H{n), and T(n), are assumed to be primi-
tive values supplied with the graph specification. In the case of multicomponent synthesis, performance
attributes of nodes and level-1 partition segments in the graph, A(n), H{n), and T(n), are determined
through scheduling and performance estimation of individual nodes (level-1 partition segments) (see Sec-
tion 3 and [19]). In the case of RTL partitioning, performance attributes of nodes are obtained from a
register level component library. Only the area attribute of register level components is supported at the
RTL level.

Definition 2.4 The level set, C, is a set of k natural numbers 1,2,.. .,k, i.e
C = {l,2,...,k}.

97

Area Switch Pin Speed
Capacity Capacity Capacity Capacity Cost Level

Id a(p) (sq mm) n(p) b(p) t(p) (ns) c(p) (S) lmap(p)
Pi 5 400 40 50 400 1
P2 10 400 80 50 600 1
Pz 18 1000 84 50 1500 1
PA 6 600 40 50 250 2
Ps 12 600 80 50 300 2
PQ 20 1200 84 75 600 2
P7 40 5000 64 100 200 3
Ps 60 5000 84 100 400 3

Table 1: Example of Package Alternatives

Definition 2.5
(1) P is a set of package alternatives, i.e., P = {p\,p2, ■ • -,pn} with

area capacity a(p), switching activity capacity h(p), pin capacity b(p), speed capacity t{p), and
cost c(p) for p € P

(2) Irnap is a function that maps elements of P to the level set
Irnap : P -+ £

(3) The minimal elements, Pmin, of P are given by
Pmin = {p\p€ P and lmap(p) = 1}

(4) The maximal elements, Pmax, of P are given by
Pmax - {p I P € P and lmap{p) = k}

(5) A relation -< is defined in P such that
P\ < p2 iff package p\ can be contained in package pz, i.e.,
Imaplpz) = lmap(pi) + 1

(6) The defining size of a package set P is the package level of the maximal elements, i.e.,
defining size = lmap(maximal element) = k.

Table 1 shows an example set of package alternatives with area capacity, heat capacity, pin capacity, speed
capacity, cost, and lmap defined for all its members. The defining size of this package set is three.

To realize a hierarchical package design, the k-level partition of a graph (Definition 2.3) needs to be bound
to packages from the available set of package alternatives (Definition 2.5). Definition 2.6 describes this
binding.

Definition 2.6 A binding of a k-level partition of a set Af to a set of package alternatives P yields a set
of map functions M:

M = {mapi,map2,...,mapk}
mapi: P; —* p,-, Pi € J>, Pi C P, Pi is a bag, i.e., duplicates are allowed in p; and
Vp € Pi lmap(p) = i

such that
if 5 is a segment in Pi, then

mapi(Pi) >■ mapi-i(S) i.e., Vp € mop:-(Pj) and V? £ mapi-^S), p y q.

Consider the 3-level partition of N from Figure 1. A binding of this 3-level partition of N to the set of
package alternatives from Table 1 yields the following set of map functions:

98
j\A = {Tnapi,map2,Tnap^},

mapi : Pi -* {pz,P3,P2},
mapi : P2 -* {pG,pe,Ps}, and
maps : P3 -+ {^s}
mapz{Pz) >■ map2(P2) >- mcpi(Pi), i.e.,
lmap(ps) = /map(p3) + 1
lmap(p&) = lmap(pe) + 1.

To find a package design that satisfies constraints imposed by packages, rules of computation for perfor-
mance attributes of partition segments need to be developed. Definition 2.7 outlines rules of computation
to determine area, switching activity, pins, and speed of partition segments. Performance attributes of
partition segments at higher levels of packaging are computed from performance attributes of constituent
parts at lower packaging levels. Performance attributes of segments at level-1 are computed from primitive
attributes of nodes in the input graph.

Definition 2.7 The computation rules for the physical attributes of area, heat, pins, and speed of a
segment 5 in a 1-level partition P{ (part of a k-level partition V) are defined below:

for 2 < i < k:

(a) area of segment A(S) is given by:

A{S) = Yl a{mapi-i{s))

(b) heat of segment E(S) is given by:

tf(5) = £*(*)

(c) pins of segment B(S) are given by:

•B(^) = ^2 Zx, £x spans segments sa and sy, sa € S and s& € Sy; Sy € P;, and S £ Sy
exeE

(d) speed of segment T(S) is given by:

T(S) = max{T(s)), s € 5;

for Pi:

(a) area of segment A(S) is given by:

MS) = Y, A(n) and n € iV

(b) heat of segment S (S) is given by:

E(S) = £ H{n) and n,- € N

(c) pins of segment B(S) are given by:

B(S) = X] e*' ea: SP3^8 n°des na and ny, na € 5 and nj, € 5V; 5j, € Pi, and 5 ^ Sy
tx€E

(d) speed of segment T{S) is given by:

T{S) = mox(T(n)), re € S and n € iV.

In the case of multicomponent synthesis, performance attributes of level-1 partition segments are computed
by carrying out a schedule and performance estimate step on each proposed segment. Physical attribute
computation is shown below for the example in Figure 1.
for Pa:
A{$i) = A{nx) + Ato) = 18, A(s2) = A(n3) + A(n4) = 17, and A{s3) = A(n5) = 10

99
H{Sl) = H(ni) + E{n2) = 700, J7(s2) = E{n3) + E(n4) = 670, and #(53) = H{n5) = 380
5(«i) = 73, B(s2) = 73, and B{s3) = 68
T(«i) = Tnoar(r(ni),r(n2)) = roaz(100,100) = 100,
T{s2) = max(r(n3),r(n4)) = max(100,100) = 100, and
T{sz) = mox(r(n5) j = 100

for P2:
A(5n) = o(mapi(«i)) = 0(^3) = 18, A(«i2) = a(mapi(s2)) = afc*) = 18, and
A{siz) = a(mapi{s2)) = a(p2) = 10
E{sn) = H(si) = 700, E(sl2) = E(s2) = 670, and H(sa) = #(53) = 380
B(su) = 73, 5(5i2) = 73, and B(siz) = 68
T(su) = max{T{si)) = 100, T(*i2) = max(T{s2)) = 100, and T(513) = moz(r(53)) = 100

for P3:
4(52i) = a(map2(^ii)) + a("*ap2(si2)) + a("iop2(si3)) = 20 + 20 + 12 = 52
ff(«21) = J («11) + S(s12) + E{s13) = 1750
B(s2l) = 75
T(«2i) = max(T(s11),T{sl2),T(sl3)) = 100.

Definition 2.8 formulates the hierarchical package design problem for an input graph G and a package set
P. The hierarchical k-level package design problem is presented below as a constraint satisfying k-level
partitioning problem (Definition 2.3) that is bound to packages from the package library. At each level, i
in the package hierarchy, the binding generated by map.: has to be a package from the set of packages such
that performance constraints are satisfied. Also, cost constraint on the entire design has to be satisfied.

Definition 2.8 Given G = (N, £?), a package set P with defining size fc, and a cost constraint C, find a
k-level partition V = {Pi, P2,...,Pit} of G and a binding of V to P such that
for 1 < i < k, if 5 € P

A(S) < a(mapi{S)),
E(S) < h(mapi(S)),
B{S) < b(mapi(S)),
T{S) > t{mapi{S)).

subject to
k

Cost{V) =]T c(mapi(Pi)); Cost(V) < C.
t=i

A cost constraint of S 5500.00 yields a solution to the k-level partitioning problem, for our running example
(Figure 1), with cost $ 5500.00 and the following characteristics of the binding (see Figure 2).

for Pi:

(A(si) = 18) < (a(roapi(*i)) = a(j*) = 18), {A(s2) = 17) < {a{maPl(s2)) = a(ps) = 18), and
{A(s3) = 10) < (<x(mapi(s3)) = a(p2) = 10)
[E{si) = 700) < (himap^sx)) = hfa) = 1000), (#(52) = 670) < (h(maPl(s2)) = Afo) = 1000), and
{E{s3) = 380) < (Ä(mapi(«3)) = &(pj) = 400)
(P(5l) = 73) < (6(mopi(s1)) = 6(ps) = 84), (P(s2) = 73) < {b(maPl{s2)) = 6(1*) = 84), and
(B(s3) = 68) < (6(mop1(53)) = 6(p2) = 80)
(T{sx) = 100) > (/(mop^)) = *(ps) = 50), (T(s2) = 100) > (timap^)) = tfo) = 50), and
(T(*3) = 100) > (i(mop1(53)) = t(p2) = 50) ■

for P2:
(A(«u) = 18) < (o(mop2(5n)) = a(p6) = 20), (A($12) = 18) < (a(map2(512)) = a(p6) = 20), and

100

N = {n1,n2, n3, IM, nS}

P1=S = {s1,92,s3)

91 = {n1, n2}

*2 = {n3,n4}

s3 = {n5)

P2 = {311,512,313)

«11 = {»1}

s12 = {s2]

*13 = {s3J

P3 = {s21}

s21 = i»11,s12,s13}

S21-p8

Figure 2: Example Solution

(A{s13) = 10) < (a(map2(sl3)) = a(p5) = 12)
(H($n) = 700) < (h(map2(sn)) = h(p6) = 1200), {E(sl2) = 670) < {h{map2{sl2)) = h(p6) = 1200), and
(#(s13) = 380) < ih(map2(si3)) = h{p5) = 600)
(B(s11) = 73) < (b(map2(sn)) = 6(p6) = 84), {B{sl2) = 73) < (b(map2(s12)) = 6(?6) = 84), and
(B{s13) = 68) < (b(map2(s13)) = b(p5) = 80)
(T(«n) = 100) > (*(ma?2(^:)) = *(Pe) = 75), (T(s12) = 100) > {t{map2{s12)) = t(p6) = 75), and
(T(s13) = 100) > (t(map2(sl3)) = t(ps) = 50)

for P3:
(A(s21) = 52) < (c(map3(s2i)) = a(ps) = 60)
(F(52i) = 1750) < (MmaP3(52i)) = h(ps) = 5000)
(P(s21) = 75) < (bimapzlsn)) = 6(p8) = 84)
(T(s2i) = 100) > (t(map3(s2l)) = i(p8) = 100)

it

Cost(V) = Y,c(™api(Pi)) = c{mapl{Pl)) + c{map2{P2)) + c(map3(P3)) = S 5500

c(mapi(Pi)) = c(ps) + c(p3) + c{p2) = $ 3600
c{map2(P2)) = c(p6) + c(p6) + c(p5) = $ 1500
clmap^P^) = c(p8) = $400

Cost of packaging Cost(P) is S 5500 and cost constraint C is S 5500.
Tims, Cost{V) < C.

3 Scheduling and Performance Estimation

Scheduling and Performance Estimation are important steps in high level synthesis and are used to explore
the design space [3, 27, 17, 18]. We briefly describe scheduling (see [35, 36, 37, 6] for more details) and
performance estimation (see [11, 12, 13, 30, 21, 20, 19] for more details).

Scheduling: Scheduling is the first important step in the synthesis process. The input behavioral speci-
fication is converted into an equivalent data flow graph (DFG) representation. Scheduling operates on the
DFG. DFG operations are assigned to specific control steps and are bound to physical ALUs available in

101
the component library. The output of scheduling is a time-stamped and partially bound data flow graph,
that satisfies user specified constraints. Scheduling determines execution speed of the synthesized design
in terms of clock speed and number of clock cycles required to execute all operations. In addition, it fixes
control and data path (ALU) architectures — the architecture impacts on performance of the design. An
implementation of Paulin's force-directed list scheduling [35, 36], extended for communicating and con-
currently executing processes [6], is used. Force-directed scheduling produces maximally fast (minimum
number of control steps) schedules under resource constraints. Force-directed scheduling tries to maximize
operation concurrency, ensuring high resource utilization. Hardware resources are shared across concurrent
blocks. As a result, operations in concurrent blocks are scheduled under global resource constraints. All
operations are treated as macro operations that execute in one logical control step. Operations such as '+',
'-', and call etc. are treated alike. Logical control steps are expanded into equivalent physical clock steps
during control generation [41]. All arithmetic, logical, and relational operations engage a single hardware
resource. Subprograms, loop, and wait modules are assumed to engage all available resources. Hence, call
operations do not share control steps with any other operation, i.e., no other operation is scheduled in the
same control step as a call operation.

Performance Estimation: For high performance packaging technology such as MCMS, power/heat dis-
sipation in the design is very important. An accurate performance estimator for power/heat dissipation is
needed to generate good designs. Many studies in power estimation for switch level and gate level circuits
have assumed that average power dissipation is directly proportional to the average switching activity
[32, 31, 15, 4, 45, 2, 42]. In CMOS designs, dynamic power consumption is predominant and is directly
proportional to the aggregate (total) switching activity (ASA) in the circuit. ASA in the design is defined
as the total number of circuit node switchings and is dependent upon the input patterns stimulating the
circuit. The design is composed of components from a ceE library and a finite state controller implemented
as a collection of PLAS.

We use a profile-driven approach to switching activity estimation. In this approach, event activities related
to various operations and carriers in the behavioral specification are measured by simulating the description
using user-supplied inputs. A profiler is a tool that simulates the behavioral specification with user-
supplied input patterns, called profiling stimuli. Before simulation begins, the profiler alters the behavioral
specification by inserting probes (counters) to monitor event activity in various regions of the specification.
At the end of simulation, the profiler prints the number of times each statement is executed, number of
invocations of each function and similar data pertaining to the event activity that occurred in the behavioral
specification during the simulation run. These event activities are then used during the synthesis process
(during performance estimation) to estimate the switching activity in the design being synthesized.

High level synthesis uses a library of parameterized register level module generators. Modules are pa-
rameterized with respect to number of inputs where applicable and bit-width of each input. The library
contains interface descriptions of each module, description of its parameters, and its area, delay and av-
erage intrinsic switching activity (ISA) characteristics. Area, delay and ISA values of each library module
are determined by actually generating layouts for several instances of the module with different parameter
values. Determination of area and delay parameters for layout instances is straightforward. Area can be
directly measured from the layout and delay can be determined through simulation or a timing analysis
program such as Crystal [34]. We define the average intrinsic switching activity (ISA) of a module instance
as the average number of circuit nodes that are expected to switch when an input event (change of logic
values on the input lines) takes place. ISA of a module instance is determined by extracting a switch level
model from its layout, simulating the switching level module using a very long stream of randomly gener-
ated input patterns and counting the average number of circuit nodes switched per pattern. Simulation
and counting continues untE convergence occurs.

Overall switching activity estimation is based on using event activities to modulate the average intrinsic
switching activities of library modules used in the synthesis process. This estimate is used to, in addition

8

102

(VMOU

Ttwn—iy Sound
hMUona

Figure 3: Thermal Profiling of RT level Components

to area and dock-speed estimates, to guide the synthesis process. Experimental results for a number of
examples show that switching activity estimated during synthesis deviates by less than 10% on the average
from the actual switching activity measured after completing synthesis [20]. Area and delay estimation are
based on the work of Jain [11], Kurdahi [21], Mlinar [30], and Dutta [6].

Thermal Profile of RT level components: For modern high performance packaging technology such
as multichip modules (MCMS) heat dissipation in the design is a critical performance measure. For efficient
utilization of such high performance packaging technologies, thermal constraints of packages need to be
satisfied. To evaluate the feasibility of partitions, accurate power/heat dissipation figures of the register
level components is required by the partitioning algorithms. Power/heat dissipation can be approximated
by an estimation of switching activity in a design as average power dissipation in a circuit is directly
proportional to the average switching activity. The switching activity estimation procedure consists of
counting the switching activity of nodes in a circuit during a switch level simulation of layout/switch level
models of the register transfer level components with a characteristic set of test vectors. A characteristic
set of test vectors for each component is derived from the set of behavioral test vectors used by the designer
to validate the behavioral specification prior to synthesis.

Figure 3 demonstrates the technique of switching activity estimation. Partitions with single register level
components are generated. Each register level component in the synthesized design is placed on a separate
partition. Layouts and switch level models of these single component partitions are generated. The switch
level models are simulated with switch level test benches (generated using a test bench compiler - TBC
[49, 52]) and the number of nodes switching in the switch level model are counted. This count of node
switches gives a very accurate measure of the power/heat dissipation in the register level component. This
switching activity data is used by the partitioning algorithms to generate thermally sound partitions.

This process of generating switching activity measures for all register level components in the RTL design
is too time consuming. For example, a small traffic light controller example (TLC, see [19, 48] has 49 RTL
components and gets synthesized to a 4769 transistor design. Five behavioral test vectors get translated
into 1320 switch level test vectors (for each component). Complete layout generation, extraction of switch
level models, conversion of behavioral test vectors into switch level test vectors, and switch level simulation
together took about 48 hours. The layouts and switch level models of every RTL component needs to be
generated individually and each of them has to be simulated at the switch level with a characteristic set
of input vectors. A handful of test vectors at the behavioral level explode into thousands of switch level

103
vectors. Layout generation and switch level simulation (for all components) are too time consuming for
this technique of switching activity estimation to be viable for large RTL designs.

4 Hierarchical Partitioning and Package Design Algorithm

The solution to the above problem takes the form of a hierarchical partitioning and package design algo-
rithm that incorporates back-tracking while tightening cost constraints on the design with each succeeding
refinement in the design. The algorithm takes the following inputs: (1) behavioral VHDL specification of
a digital system viewed as a process graph composed of communicating and concurrently executing pro-
cesses; alternately, an RTL netlist composed of register level components; (2) parameterized register level
component library characterized for area, delay, and switching activity; (3) package library with area, pins,
switching activity, clock speed, and cost information for all packages: (4) cost constraint C, in dollars on
the entire design. The algorithm begins by partitioning the process graph and mapping partition seg-
ments (after scheduling/performance estimation to obtain accurate performance attributes of the design)
onto available bare-die packages; alternately, by partitioning the RTL netlist and mapping segments in the
partition onto available bare-die packages. A graph is constructed from the generated partition at this
level for further partitioning at the next higher level of packaging. The packaged partition segments form
nodes in the new graph: edges of the graph are obtained from the interconnection of register level designs
in the multicomponent design. At the next higher level of packaging, this new graph is partitioned and
mapped onto packages. This process continues until the packaging hierarchy is exhausted and at each level,
partition segments are mapped onto cost effective packages. If, at a particular level, no solution is found,
we back-track to the previous level, tighten cost constraints, and construct a new partition and continue.

The output of hierarchical partitioning and package design is: (1) a set of RTL designs (individual RTL
designs that together form the multicomponent design); (2) a set of structures that realizes the hierarchical
design; and (3) a binding of the RTL designs and structures to appropriate cost effective packages from the
package library at each level of packaging. The design satisfies capacity constraints imposed by packages
and the algorithm composes designs and picks packages such that overall cost constraint on the design is
satisfied.

Partitioning and package design at each level involves: (1) determining cost constraint and physical con-
straints on the design — overall area and switching activity constraints on the design are derived from
the minimum capacity package at the highest level in the package hierarchy (say, the minimum area and
switching activity capacities of all available boards if the package hierarchy ended at board level); indi-
vidual segment area, switching activity, clock speed, and pin constraints are derived from the capacity of
available packages at a particular level of packaging; (2) constructing the partition subject to constraints
and mapping onto a set of cost effective packages. At level-1 in the packaging hierarchy, in the case of mul-
ticomponent synthesis, scheduling and performance estimation is carried out on each proposed partition
segment and performance attributes of the segment are determined and feasibility of the multicomponent
design and partition checked. At other levels in the packaging hierarchy, performance attributes of pro-
posed partition segments are composed of its constituent parts and their packaging; (3) checking to see if
constraints are satisfied and if we need to back-track or proceed to next higher level of packaging; and (4)
construct netlist for next level and go to (1). At any level in the package hierarchy, the cost constraint is
determined by deducting the cost of packaging partitions at lower packaging levels and the projected cost
at higher packaging levels from the total cost constraint, C.

Setting Constraints: Initially, on the first pass, overall constraints on area and switching activity con-
straints on the entire design are derived from the minimum area and switching activity capacity of packages
at the highest level in the package hierarchy (since, eventually, the design hierarchy needs to be mapped
onto a package at the top level in the package hierarchy); the cost constraint is set by subtracting the

10

 104

Algorithm 4.1 (Set-Constraint)

P: package set, C: overall cost constraint on design
k: levels in package hierarchy, level: current level
area: overall area constraint, cost: cost constraint at current package level
CTF: constraint tighten factor (< 1), COF: cost overrun factor (< 1)
pass: flag to generate physical constraints on design (initially 1)

SeLConstraintQ
begin

if pass = 1 then /* set physical constraints from package at level k in package hierarchy */
cost <— C — J2i=2 smallest package cost
area *— min (area capacity of package at level k)
switch <— min(switching activity capacity of package at level k)
pass <— pass + 1 /* set flag to indicate physical constraints set */

elsif (status = SUCC) V (bJrack = FALSE) then
cost«- C - T,Luvei+i smallest package cost - E'IT'"

1
 package cost

elsif b.track = TÄÜZEthen
cost.over.run *— costal — cost
if cost.over.run < cosii„,e/_i then

cost ■*— costievei-i — cost.over.run xCOF
else

cost <- costieve[-i x CTF
end if

end if
end

cost of the smallest packages at all levels of packaging above level-1. On subsequent invocations, if the
algorithm is back-tracking, a cost overrun is computed; if the cost overrun is less than the cost of the
previous level's packaging, cost constraint for the previous level (on a back-track) is set by subtracting a
product of the cost overrun and a cost overrun factor (COF < 1) from the cost of the previous level's
packaging; if the cost overrun is greater than the cost of the previous level's packaging, cost constraint
for the previous level (on a back-track) is set by multiplying the cost of the previous level's packaging by
a constraint tighten factor (CTF < 1). COF and CTF dictate the rate at which the cost constraint is
tightened on a back-track. Typical values of COF are between 0.2-O.3 and CTF between 0.9-0.95 to enable
effective search of the design space. If the algorithm is not back-tracking, cost constraint is generated by
subtracting the actual cost of packaging at lower levels of packaging and the projected packaging cost at
higher levels (cost of smallest packages) from the total cost constraint, C.

Hierarchical Partitioning and Package Design (HPP): Algorithm 4.2 presents the hierarchical parti-
tioning and package design algorithm (HPP). HPP has access to a hierarchical clustering based partitioning
algorithm (HCP - Algorithm 4.3) and a multiway partitioning algorithm (MP - Algorithm 4.4). When parti-
tioning at any level, HPP first determines cost, area, and switching activity constraints using Set-Constraint
(Algorithm 4.1); HPP then invokes HCP to generate a partition and a binding of its partition segments to
packages from the package library. HCP utilizes the underlying clustering in the design to quickly generate
a partition. If HCP does not find a constraint satisfying solution, MP is invoked. MP explores a larger design
space by constructing a class of partitions; MP returns the first partition that satisfies constraints, or, in
the absence of a constraint satisfying solution, returns the best cost solution from the class of partitions.

11

105

Algorithm 4.2 (HPP Algorithm: HierPartPack)

G: input graph (Behavioral specification/RTL netlist), P: package set
C: overall cost constraint on design, EN: hierarchical netlist manager
StatArrpc], BtkArrfk]: status of partitioning and number of back-tracks at each level
MaxBtk: User specified limit on number of back-tracks at any level
k: levels in package hierarchy, level: current level, area: overall area constraint
switch: overall switch activity constraint, cost: cost constraint at current package level

EierPartPack(G, P, C)
begin

level«— 1 Gtevel <— G Solution *— null
while level < k do

Set-Constraint()
(EcpStatus, HcpSolution) «— ECP(Gievei, P(level), cost, area, switch, level)
if EcpStatus # SUCC then

(status, Solution) <— MP(Gievel, P(level), cost, area, switch, level)
end if
if (status j£ SUCC) A (cost(HcpSolution) < cost(MpSolution)) then

(status, Solution) *— (EcpStatus, EcpSolution)
end if
StatArrpc] <— status
case status is

SUCC:
level *- level + 1 EN :: readjpartition (Solution)
EN :: constructjnetlist(level) /* construct netlist at next level */

BEST:
if (StatArrflevel - 1] = SUCC) A (BtkArrpcJ < MaxBtk) then

BtkArrfk] «- BtkArrfk] + 1 level *- level - 1 /* back-track */
else

level *- level + 1 EN :: readjpartition (Solution)
EN:: constructjnetlist (level)

end if
FAIL:

if (StatArrpevel - 1] = SUCC) A (BtkArrfk] < MaxBtk) then
BtkArrfk] *- BtkArrfk] + 1 level *- level - 1 /* back-track */

else return fnulty end if
end case
Guvei «— EN :: readjnetlist(level) /* retrieve next level netlist */

end while
ret urn (Solution)

end

12

106
Both partitioning algorithms, HCP and MP, return a status along with a solution (partition with segments
bound to packages). Status takes three values of SUCC, BEST, or FAIL to describe the cases where a
constraint satisfying solution is found (a constraint satisfying partition with partition segments mapped
onto packages from the package library), a solution is found (valid partition - a partition with segments
mapped onto packages), or no solution is found (no valid partition - one or more partition segments cannot
be mapped onto packages).

Status is used to decide the execution flow of HPP. If the status of partitioning is SUCC, then HPP proceeds
to the next higher level of packaging. A hierarchical netlist manager (HN) is used to generate a netlist,
of the newly generated partition, for use at the next higher level. If, at a particular level, the status is
BEST or FAIL, and: if the previous level partition's status is SUCC, HPP back-tracks to the previous level
and generates a new partition with tighter cost constraints; if the previous level partition's status is BEST
and the current level partition's status is BEST, HPP proceeds to the next higher level of packaging; if the
previous level partition's status is BEST and the current level partition's status is FAIL, HPP terminates
reporting failure to find a solution. HN is used to generate the netlist for partitioning. On a recursive
back-track, back-tracking continues until we reach a level where the status of partitioning is BEST. When
we encounter a status of BEST, we cannot do any better and the back-track stops, and the algorithm
proceeds to the next higher level of packaging.

Hierarchical Cluster-based partitioning (HCP): Hierarchical clustering is the partitioning technique
[14]. Algorithm 4.3 describes HCP. A cluster tree for the input graph is constructed using the hierarchical
clustering approach. The hierarchical clustering algorithm groups a set of objects according to some
measure of closeness [14]. Two closest objects are clustered first and considered to be a single object for
future clustering. Clustering continues by grouping two individual objects, or an object or cluster with
another cluster on each iteration. The process stops when a single cluster is generated and a hierarchical
cluster tree is formed. Alternate partitions are constructed by traversing this cluster tree and moving the
cut-line [14, 25, 23, 24]. Figure 4 shows an example cluster tree and the different cut-lines and associated
partitions. A map function maps partition segments to available packages in the package library. Partition
segments and the entire partition are then checked for constraint satisfaction. A sum of package costs
(for all partition segments) gives the cost of the partition. In the case of a constraint satisfying solution
(performance and cost), the solution (partition) is returned to the hierarchical partitioning algorithm with
status SUCC. In the case of a solution (valid partition with partition segments mapped onto packages)
that does not satisfy constraints, a status BEST is returned. When no solution (no valid partition - one
or more partition segments cannot be packaged) is found, a FAIL is returned.

Multiway Partitioning Algorithm (MP): MP (Algorithm 4.4) is built on top of the Multiway Fiduccia-
Mattheyses algorithm (MFM — Algorithm 4.5). MP first determines the minimum and maximum number
of segments that feasible partitions can have (the partition is feasible, i.e., there may exist a partition such
that partition segments can be effectively bound to packages from the package library). The minimum
number of segments (minseg) is determined by; dividing the area constraint on the design by the area
capacity of the largest package; dividing the switching activity constraint on the design by the switching
activity capacity of the largest package; and picking the larger of the two. The maximum number of
segments {maxseg) is determined as the number of nodes in the input graph (in the case of multicomponent
synthesis, the number of processes in the input process graph; alternately, a user specified limit on the
number of RTL components or the number of RTL components in the case of an RTL netlist). MP invokes MFM
to generate partitions with number of segments varying from min_seg to maxjseg. MP returns with status
SUCC if a constraint satisfying partition is found. When a constraint satisfying solution is not found, MP
returns the best solution found with status BEST. In the case of no valid partitions (one or more partition
segments cannot be packaged), MP returns FAIL. Algorithm 4.5 presents the modified MFM algorithm.
MFM repeatedly calls a K-way Ficuccia-Mattheyses based partitioning algorithm (KWAY - Algorithm 4.6)
to generate partitions. MFM keeps track of the best cost partition. MFM returns a constraint satisfying
partition, if found, or the best cost partition, KWAY determines area, switching activity, clock speed, and

13

107

Algorithm 4.3 (HCP Algorithm)

CD : depth of cluster tree, P : partition at current level in cluster tree
S : segment in partition, p : package segment is mapped to
level: level in the package hierarchy, cost: cost constraint on current package level
area : overall area constraint, switch : overall switching constraint

HCP(level, G, PackageLib, cost, area, switch)
begin

construct cluster tree (T)
best-cost <— co Solution <- null status «— FAIL CD *- depth(T)
for treeJevel = 1 to CD do

constraint-satisfied <— TRUE
for each 5 6 P do /* individual partition segment constraints */

if level = 1 then /* pure behavior specification — estimate attributes */
Schedule/Performance Estimate S and generate A(S), H(S), B(S), and T(S)

end if
p *— PackageLib :: map(S) /* get package segment S fits on */
if ((p jL null; A (A(S) < A(p)) A (E(S) < E(p)) A (B(S) < B(p)) A

(T(S) > T(p))) then constraint-satisfied^- constraint^satisfied A TRUE
else constraintjsatisfied«— FALSE end if

end for
if constraintjsatisfied — TRUE then /* overall design constraints */

if ((cost(P) < cost) A (Area(P) < area) A (Switch(P) < switch)) then
return (SUCC, P)

elsif cost(P) < cost then
Solution <- P cost *- cost(P) status <- BEST

end if
end if

end for
return (status, Solution)

end

14

108
Cut Um

^MuinCDnMBondiiglDCMUjm»

Figure 4: Example Cluster Tree and Partitions

pin constraints from packages in the package library and using these constraints generates a partition and
maps partition segments to packages. At the completion of KWAY, the algorithm returns a partition with
segments bound to packages in the package library.

k-way Fiduccia-Mattheyses Algorithm (KWAY): The k-way FM algorithm (KWAY — Algorithm 4.6)
starts by creating a random initial partition of n partition segments. Nodes in the graph are randomly
assigned to the n segments. Each segment gets some nodes from the set of vertices V of the graph G. The
initial partition is saved in Best. Cost of this partition is saved as besLcost. k-way partitioning is carried
out by repeatedly invoking two-way FM (two.way.fm) on pairs of partition segments, two.way.fm tries to
improve bi-partitions by moving one node at a time from one partition segment to the other, taking care
not to violate area and switching activity constraints. The two.way.fm algorithm is based on Fiduccia
and Mattheyses's bi-partitioning algorithm [8]. two-way.fm is invoked until, either a user specified limit on
number of total iterations is exceeded, or a user specified limit on number of iterations over which partition
cost does not improve is exceeded. The best cost solution found during the iterations is returned as the
k-way partition.

Multicomponent Synthesis: Multicomponent synthesis is carried out when the input is a behavioral
specification. HCP and MP algorithms carry out multicomponent synthesis at level-1 in the package hierar-
chy. Multicomponent synthesis is carried out by synthesizing individual partition segments at level-1. De-
sign tradeoffs are performed by considering various partitions and carrying out scheduling and performance
estimation on proposed partition segments and determining performance attributes of the synthesized RTL
designs and determining if they satisfy capacity and cost constraints imposed by available packages. Also,
a global controller is automatically placed on a partition segment and interconnected with the RTL design
segments. The global controller is placed on a partition segment whose package has the most space to fit
the controller. HCP (Algorithm 4.3) considers different partitions by traversing the cluster tree — each
level in the cluster tree represents a different partition (see Figure 4). At level-1, every time a new partition
is considered — HCP carries out scheduling and performance estimation on each of the proposed partition

15

109

Algorithm 4.4 (Multiway Partitioning Algorithm: MP)

G: input graph, P: package set, p: individual package from P
area: overall area constraint, switch: overall switch activity constraint
C: cost constraint on design, level: level in package hierarchy

MP(G, P, C, area, switch, level)
begin

minseg <— max(area ~- max-area(p), switch 4- maxswitch(p))
maxseg <— num-cell(G) /* number of nodes in graph */
best-cost -f— oc status <— FAIL Solution *— null
for numseg = minseg to maxseg do

(status, TempSolution) *— MFM(G, P, nurnseg, C, area, switch, level)
if status = SUCC then

return (status, TempSolution)
elsif (status = BEST) A (cost(TempSolution) < besLcost) then

Solution <— TempSolution besLcost <— cost (TempSolution)
end if

end for
return (status, Solution)

end

segments (to compute performance attributes of the RTL design) and then tries to map these segments
onto packages from the package library. Multicomponent synthesis in MP occurs in KWAY (Algorithm 4.6).
At level-1 whenever a new partition is constructed, scheduling and performance estimation are carried out
on individual partition segments. In Algorithm 4.6 a schedule/performance estimate step is carried out
when the initial partition is generated and also every time a new partition is generated. By scheduling
and performance estimation, we predict the performance characteristics of the individual synthesized RTL
designs and also of the entire multicomponent design.

At the end of multicomponent synthesis and hierarchical package design we have a multicomponent design
composed of interacting RTL design segments — the multicomponent synthesis phase produces multiple
behavior segments that are completely synthesized to RTL designs using a high level synthesis system such
as DSS [40, 41]. Also produced is a hierarchical structural design (the leaf nodes in this design are the
individual RTL designs) that is mapped onto efficient cost-effective packages from a package library.

An Example: We illustrate the HPP algorithm (Algorithm 4.2) through an example. The graph in
Figure 1 is partitioned onto the package set specified in Table 1 (to generate a hierarchical design that is
mapped onto cost effective packages). Hierarchical partitioning and package design generates a package
hierarchy in addition to a multichip design for the input specification.

Let the user specified cost constraint, C, be S 5000. First the overall area and overall switching activity
constraints are determined from the capacity of the smallest package at the highest package level (since,
eventually, the design hierarchy will be mapped onto a package at the highest level in the package hierarchy)
— the overall area and switching activity constraints are set from the area and switching activity capacities
of p7 at level-3 which has an area capacity of 60 sq mm and switching activity capacity of 5000. The cost
constraint on level-1 packaging is given by subtracting the projected packaging costs at levels 2 and 3 from
C, i.e., by subtracting the cost of the smallest packages at each of these levels from C. The cost constraint
on level-1 packaging is S 4550 (5000 - 200 - 250). Set-Constraint (Algorithm 4.1) is used to set the area

16

no

Algorithm 4.5 (Multiway Fiduccia-Mattheyses Algorithm: MFM)

G: input graph, P: package set, C: cost constraint on design
A: overall area constraint, S: overall switching activity constraint
n: number of segments, level: level in package hierarchy

check-constraint(S)
begin

status *- BEST toLarea <— 0 totswitch «- 0 toLcost <— 0
for all Si € S do /* segments in partition */

if map(si) = null then /* partition segment not mapped to package */
TetuTn(FAIL)

end if
toLarea <— tot-area 4- area(map(si))
tot-switch <— totswitch + switch(si)
tot-cost <— tot-cost + cost(map(s{))

end for
if (tot-area < A) A (tot-cost < C) then

status *~ SUCC
end if
ret urn (status)

end

MFM(G, P, n, C, A, S, level)
begin

Best *- KWAY(G, P, n, level) /* generate first partition */
num-fm-ite <— 1 num-fmJmp <— 1 status «— check-constraint(Best)
while status ^ SUCC A num.fm.ue < MAX-FMJTE A num.fm.imp < MAX-FMJMP do

S <— KWAY(G, P, n, level) status *- check-constraint(S) num.fm.ite <— num.fm.ite + 1
best-cost *- cost(Best)
if (status = SUCC) V ((status = BEST) A (cost(S) < besLcost)) then

Best«— S
end if
if (cost(S) < besLcost) then num.fm.imp *- 1
else num-fm-imp *- num.fm.irnp + 1 end if

end while
ret urn (status, Best)

end

Ill

Algorithm 4.6 (k-way FM Algorithm: KWAY)

G: graph G = (V,E), V is a set of vertices and E is a set of edges
P: set of packages, S: {si, s?, ■ • •, sn} a partition of G with n segments

KWAY(G, n, level)
begin

Best *— initializeQ /* create initial partitions */
if level = 1 then /* pure behavior specification — estimate attributes */

for all 5 € Best do
Schedule/Performance Estimate s and generate A(s), H(s), B(s), and T(s)

end for
end if
best-cost <— 0 S *- null conLpart <— TRUE ite.cnt <— 1 imp.cnt *- 1
for all 5 € Best do /* map partition segment to package and find cost */

best-cost«— best.cost + cost(map(s))
end for
while conLpart = TRUE do

for i = 1 to n—1 do
for j = i+1 to n do

twojway.fm{si, Sj)
end for

end for
if level = 1 then /* pure behavior specification — estimate attributes */

for all s € S do
Schedule/Performance Estimate s and generate A(s), H(s), B($), and T(s)

end for
end if
curr.cost *— 0
for all s 6 S do /* map partition segment to package and find cost */

curr.cost *— curr.cost + cost(map(s))
end for
ite-cnt «— ite-cnt + 1
if curr-cost < besLcost then

imp-cnt *~ 1 Best«— S /* save best partition seen so far */
else imp.cnt <— imp.cnt + 1 end if
if ite-cnt = MAXJTE V imp.cnt = IMP.CNT then conLpart«- FALSE end if

end while
return (Best) /* retrieve best partition */

end

18

112

s2-p3

s1-p3

s3-p2

Overall Cost Constraint = $ 5000
Uvel-1 Cost Constraint = $ 4SS0
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Cost = $3600
Actual Area = 46 sq. mm
Actual Switch = 1750

Figure 5: Level-1 Partition — First Pass

and switching activity constraints on the entire design and the cost constraint for level-1.

Having determined the cost, area, and switching activity constraints on the partition at level-1, the next
step is to construct a partition. HPP invokes HCP to generate a partition and a binding of its partition
segments to packages from the package library. If HCP does not find a constraint satisfying solution, MP

is invoked. MP first determines the minimum and maximum number of segments (minseg and maxseg).
Feasible partitions with 3, 4, and 5 segments can be generated for the design. Partitions with 1 and 2
segments are not feasible because no package at level-1 has sufficient area or switching capacity. After
determining the minimum and maximum number of segments in feasible partitions, MP invokes MFM to
generate partitions with number of segments varying from min.seg to max-seg. MFM calls a k-way Fiduccia-
Mattheyses based partitioning algorithm (KWAY- Algorithm 4.6) to generate partitions. MFM keeps track
of the best cost partition and returns a constraint satisfying partition, if found, or the best cost partition.

When HPP starts the process of hierarchical partitioning and package design (entering the while loop in
Algorithm 4.2), it invokes MP with the input graph (in the case of multicomponent synthesis, a process
graph; alternately, an RTL netlist), a set of packages available at level-1, a cost constraint (S 4550), an area
constraint (60 sq mm), and a switching activity constraint (5000). Figure 5 illustrates this state and the
level-1 partition. Partition segments are marked by dashed lines and the packages partition segments are
mapped onto are indicated in text within the segments. A three segment partition with cost $ 3600, area
46 sq mm, and switching activity 1750 is generated. This partition satisfies area, switching activity, and
cost constraints and thus MP returns a SUCC status. HPP then uses the hierarchical netlist manager (HN)

to read the generated partition and construct a netlist for partitioning at level-2.

Following level-1 partitioning, Set-Constraint is invoked to set the cost constraint for the level-2 partition.
HPP then invokes MP with the new netlist (generated from the level-1 partition), the set of packages available
at level-2, a cost constraint (S 1200), and area and switching activity constraints (60 sq mm, 5000). Figure 6
illustrates the level-2 partition. A three segment partition with cost S 1500, area 52 sq mm, and switching
activity 1750 is generated. This partition satisfies the area and switching activity constraints, but violates

19

113

s11-p6

s12-p6

Overall Cost Constraint r $ SOOO
Lcvel-2 Cost Constraint = $ 1200
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Costs $1500
Actual Area = 52 sq. mm
Actual Switch = 1750

Figure 6: Level-2 Partition — First Pass

the cost constraint, thus MP returns a BEST status, HPP now back-tracks to level-1 and starts the second
pass (a new pass starts every time we back-track to level-1).

On the back-track HPP tightens the cost constraint using Set-Constraint. Assuming a cost overrun factor
(COF) of 1, the new cost constraint for the level-1 partition is $ 3300 (as computed by Set-Constraint).
HPP re-invokes MP on the RTL netlist (area and switching activity constraints stay the same and the set
of packages available at level-1 stays the same). Figure 7 shows the new level-1 partition. A four segment
partition with cost S 3300, area 48 sq mm, and switching activity 1750 is generated. This partition satisfies
area, switching activity, and cost constraints and MP returns a SUCC status. HPP then generates a new
netlist using HN for level-2.

For the level-2 partition HPP invokes MP with the new netlist and a cost constraint of S 1500. Figure 8
shows the second pass level-2 partition. A three segment partition with cost S 1500, area 52 sq mm,
and switching activity 1750 is generated. MP returns a SUCC status as area, switching activity, and cost
constraints are satisfied, HPP uses HN to generate a netlist for level-3.

A cost constraint of $ 200, an area constraint of 60 sq mm, a switching activity constraint of 1750, and a pin
constraint of 75 are considered for the level-3 partition. Figure 9 shows the second pass level-3 partition.
A one segment partition with cost S 400, area 60 sq mm, and switching activity 1750 is generated. MP
returns a BEST status as the cost constraint is not satisfied, HPP now back-tracks to level-2.

At level-2 HPP invokes MP with a cost constraint of $ 1300 (as determined by Set-Constraint). Figure 10
shows the second pass level-2 partition on a back-track. A three segment partition with cost S 1500 is
generated. MP returns a BEST status as the cost constraint is not satisfied, HPP now back-tracks to level-1
and begins the third pass.

The third complete pass begins at level-1 with a cost constraint of S 3100. Figure 11 shows the third pass
level-1 partition. A five segment partition with cost S 3000, area 50 sq mm, and switching activity 1750 is
generated. MP returns a SUCC and HPP proceeds to level-2.

20

im

Overall Cost Constraint = $ 5000
LeveW Cost Constraint = $ 3300
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Cost = $3300
Actual Area s 48 sq. mm
Actual Switch = 1750

Figure 7: Level-1 Partition — Second Pass (Back-track)

Overall Cost Constraint = $ 5000
Level-2 Cost Constraint = $1500
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Cost = S1500
Actual Area = 52 sq. mm
Actual Switch = 1750

Figure 8: Level-2 Partition — Second Pass

• 21

115

Overall Cost Constraint=$ 5000
Level-3 Cost Constraint s S 200
Area Constraint = 60 sq. mm
Switch Constraint=5000

Actual Cost = $400
Actual Area r 60 sq. mm
Actual Switch = 1750

Figure 9: Level-3 Partition — Second Pass

Overall Cost Constraint = $ 5000
Levol-2 Cost Constraint = $ 1300
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Cost = $ 1500
Actual Area = 52 sq. mm
Actual Switch = 1750

Figure 10: Level-2 Partition — Second Pass (Back-track)

22

116

s3-p2

sl-p2

s5-p2
I i.

Overall Cost Constraint = $ 5000
Level-1 Cost Constraint = $ 3100
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Cost = $3000
Actual Area = 50 sq. mm
Actual Switch =1750

Figure 11: Level-1 Partition — Third Pass

HPP invokes MP with a cost constraint of S 1600 for the third pass level-2 partition. Figure 12 shows the
third pass level-2 partition. A three segment partition with cost S 1500, area 52 sq mm, and switching
activity 1750 is generated. MP returns a SUCC and HPP proceeds to level-3.

At level-3 MP is invoked with a cost constraint of $ 500. Figure 13 shows the third pass level-3 partition.
A one segment partition with cost $ 400, area 60 sq mm, and switching activity 1750 is generated. MP
returns a SUCC. This exhausts the package hierarchy, since there is no level-4 in the package library.

At this point HPP terminates the hierarchical partitioning process and returns the hierarchical design along
with the generated package hierarchy (Figures 11,12, and 13). The input RTL design has been successfully
mapped onto a hierarchy of packages and a constraint satisfying solution has been found. The overall cost
constraint of S 5000 on the design has been satisfied by finding a solution with cost $ 4900. At each level
in the package hierarchy, partition segments have been mapped onto available packages making sure that
capacity constraints of the packages are satisfied.

Discussion: In the above example, one of the cases we did not see in HPP is when a FAIL status is
returned by MP. A FAIL status indicates that no valid partition for the design exists at this level (i.e.,
for all feasible partitions at least one of the partition segments could not be mapped onto a package at
this level in the package hierarchy). At this point HPP checks if the status of the previous level's partition
was a SUCC and, if it is, HPP back-tracks. SUCC at the previous level indicates that there is room for
improvement at the previous level and hence the possibility of a valid solution at this level (as a result
of improvement at the previous level). If the status of the previous level's partition is BEST, there is no
room for improvement at the previous level and HPP terminates reporting failure to find a solution.

Another case we did not observe is what happens when a BEST is returned (by MP) at level-1. When
a BEST is also returned at level-2, HPP continues with the partitioning process up the hierarchy. No
back-track is attempted because a status of BEST at level-1 indicates that the partition returned is the
best cost solution found and cannot be improved. If a SUCC is returned at level-2, HPP could potentially

23

117

S11-P6

s13-pS

Overall Cost Constraint = $ 5000
Level-2 Cost Constraint = $ 1600
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Cost = 51500
Actual Area = 52 sq. mm
Actual Switch = 1750

Figure 12: Level-2 Partition — Third Pass

Overall Cost Constraints S 5000
Level-3 Cost Constraint = $ 500
Area Constraint = 60 sq. mm
Switch Constraint = 5000

Actual Costs$400
Actual Areas60 sq. mm
Actual Switch = 1750

Figure 13: Level-3 Partition — Third Pass

24

118

back-track to level-2 if level-3 returns a BEST or FAIL. If a FAIL is returned at level-2, HPP terminates the
partitioning reporting failure to find a solution. However, in all cases, there is a possibility that an inferior
solution at level-1 (a solution other than the best cost solution) could lead to a better overall solution.
But due to the nature of costs in VLSI packaging, the highest costs are incurred primarily at level-1 and
for some advanced high performance packaging technology such as MCMS at level-2, it is very unlikely that
an inferior solution at level-1 could lead to an overall better solution.

The user controls the amount of back-tracking by setting MaxBtk. Another way the user can control the
amount of back-tracking is by setting initial cost constraint as zero. When the initial cost constraint is
zero, MP is constrained to always look for the best cost solution (status BEST) at all levels in the package
hierarchy. Typically, we find that the solution converges very quickly and we only back-track 2-3 times
(see Section 5).

5 Results

We present results for a number of examples to demonstrate the validity of our approach for multicomponent
synthesis and hierarchical package design. Details of the package library are shown in Table 2. Data about
area, pin, switching activity, and clock speed constraints supported by each package and package cost are
presented. We briefly describe the example behavioral specifications. Table 3 presents some details on the
number of lines of code and number of processes for each of our examples.

Move Machine: The Move Machine was suggested by Ivan Sutherland based on the observation that
conventional processing units spend much of their time moving arguments from memory to CPU and
moving results from CPU to memory. The instruction set of the Move Machine merely controls instruction
and data flow; it does not compute any data values. Instead, certain memory locations are (assumed to
be) connected to external computational units which perform the actual computations. Paul Drongowski
provided an ISPS description of a Move Machine in [5]. The VHDL for this example was written by Jay Roy
[48, 41]. The description consists of three VHDL processes (fetch, decode and execute) and several internal
variables, signals and 'wait' statements.

Fifo: A producer-consumer problem description written using three communicating processes (PRO-
DUCER, CONSUMER, and FD70). It has five input ports (enqueue, dequeue, a, b, and c) and four
output ports (data_ready, z, overflow, and underflow). All data signals and ports (a, b, c, and z) are four
bits wide, and all controls (enqueue, dequeue, data_ready, overflow, and underflow) are one bit signals.
When enqueue goes high, values in ports a and b are added and stored in the queue. When dequeue goes
high, value in port c is subtracted from the topmost element in the queue and the result is output to z.
The queue has a depth of 10. If more than 10 values are stored in the queue, overflow goes high. Similarly,
an attempt to read a value from an empty queue results in underflow going high.

Shuffle: The Shuffle is a high speed reconfigurable 32 bit shuffle-exchange network for parallel signal
processing. The Shuffle exchange is a commercial product that Texas Instruments, Inc. (TI) used to
manufacture (TI part SN74AS8839) [33]. The shuffle-exchange network has a four level architecture that
supports five types of multiplexed data permutations: (1) forward shuffle; (2) inverse shuffle; (3) upper
broadcast; (4) lower broadcast; and (5) bit exchange. A seven bit control word determines the type of
permutation. Additional control is provided with a two bit output selector which determines if the output
should be composed of: (1) all l's; (2) the lower 16 bits - result of 4-level shuffle and upper 16 bits - all
l's; (3) the lower 16 bits - all l's and upper 16 bits - result of 4-level shuffle, and; (4) all 32 bits - result
of 4-level shuffle. The shuffle exchange is modeled as a five process description — each of the four levels of
shuffle and the output control are modeled as separate processes.

25

119

Level Name Area (sq. mm) Pins Node Switches Speed (ns) Cost (S)

1 Tinyl 5 40 50000 50 400
1 Tiny2 5 40 60000 50 500
1 Tiny3 8 40 80000 50 600
1 Tiny4 12 40 120000 50 700
1 Smalll 15 40 150000 50 800
1 Small2 18 40 200000 50 900
1 Small3 20 40 200000 50 1000
1 PGA-1 12 84 200000 50 1200
1 PGA-2 15 84 300000 50 1300
1 PGA-3 18 84 400000 50 1400
1 PGA-4 20 84 500000 50 1500
1 PGA-5 20 84 800000 50 1600
1 PGA-6 20 169 1000000 50 1800
2 Pl-1 6 40 50000 50 250
2 Pl-2 6 40 60000 50 300
2 Pl-3 8 40 80000 50 350
2 Pl-4 12 40 120000 50 400
2 Pl-5 15 40 150000 50 450
2 Cer-1 15 40 200000 50 500
2 Cer-2 18 40 250000 50 550
2 Cer-3 20 40 300000 50 600
2 PGA-1C 12 84 220000 50 800
2 PGA-2C 15 84 320000 50 900
2 PGA-3C 18 84 450000 50 1000
2 PGA-4C 20 84 850000 50 1200
2 PGA-5C 20 169 1000000 50 1500
2 MCM-1 200 169 1000000 75 10000
2 MCM-2 300 169 2000000 75 15000
2 MCM-3 400 169 3000000 75 20000
3 Board-1 300 80 2000000 100 300
3 Board-2 400 80 3000000 100 400
3 Board-3 500 128 4000000 100 500
3 Board-4 600 128 5000000 100 600
3 Board-5 800 128 8000000 100 800
3 Board-6 1000 128 12000000 100 1200

Table 2: Package Alternatives

26

120

dynl-dynlO: dyn is a five process description that monitors and maintains the dynamic length and
maximum length to which a queue in a producer-consumer problem grows, enqueue and dequeue are used
to trigger computation of length and maxJength of the queue, dyn uses four processes to check for settling
of values on enqueue, dequeue, length, and maxJength. The fifth process uses a procedure to compute
length of the queue depending on enqueue or dequeue and then computes maxJength. dynl-dynlO are
generated by making multiple instantiations (1-10) of the basic five process description of dyn.

alul-aluS: alu is a nine process description of an arithmetic and logic unit (ALU). Eight processes carry
out arithmetic and logical operations on a pair of 4 bit inputs. The ninth process uses a 3 bit function
select to determine the appropriate function (which arithmetic or logical operation) result to be output.
alul-alu5 are generated by making multiple instantiations (1-5) of the basic nine process description of
alu.

We first present results for hierarchical RTL partitioning and multicomponent synthesis and hierarchical
package design separately, and then compare the results of the two approaches. Switching activity con-
straints are not considered in hierarchical RTL partitioning and package design.

Example Num Lines (VHDL) Num Proc
MvMc 75 3
Fifo 65 3
Shuffle 472 5
dynl 132 5
dyn2 254 10
dyn3 376 15
dyn4 498 20
dyn5 620 25
dyn6 742 30
dyn7 864 35
dyn8 986 40
dyn9 1108 45
dynlO 1230 50
alul 100 9
alu2 188 18
alu3 276 27
alu4 364 36
aluö 452 45

Table 3: Design Data for Examples

5.1 Hierarchical RTL Partitioning

Table 4 presents experimental results for the hierarchical RTL partitioning approach for the above examples.
Number of RTL components in the netlist, mapping of partition segments to packages from the package
library, cost of the hierarchical partition (cost of packages partition segments are mapped onto) and cost
constraint, and execution time for the designs are presented.

We did not run the alu or dyn examples with more instantiations (larger example sizes) because execution
times for RTL netlists of the larger examples shown in Table 4 are of the order of 30 hours. These examples
show a very quick rise in execution times with increase in design sizes (in terms of RTL components in the

27

121

Example
No. of
Comps

Segments and Mapping
(■Si-Pi) Cost / Constraint Execution

Time Level-1 Level-2 Level-3
Mv Mc 53 *i-Tinyl

S2-PGA-6 s12-PGA-5C 52i-Board-l 4250/5000 13.2 s
alul 65 3i-Small3 sn-Cer-3 52i-Board-l 1900/2500 6.5 s
Fifo 76 5i-Small2 •Sn-Cer-2 52i-Board-l 1750/3000 6.4 s
dynl 128 «i-Smalll «ii-Pl-5 52i-Board-l 1550/2000 11.9 s
alu2 123 5l-PGA-3

52-PGA-4
«U-PGA-3C
«12-PGA-4C 52i-Board-l 5400/5000 49 min 36 s

alu3 .; 161 5!-PGA-6
«2-PGA-6
53-PGA-6
54-Tinyl

3H-PGA-5C
512-PGA-5C
513-PGA-5C

S14-P1-1 52i-Board-l 10850/8000 1 hr 44 min
dyn2 234 si-Tinyl

52-Tinyl
53-PGA-4
54-PGA-l

«U-PGA-4C
512-PGA-lC

«13-P1-4 52i-Board-l 6200/3200 1 hr 49 min
alu4 205 23 segments «ii-MCM-3 32i~Board-2 53600/15000 30 hr 31 min
dyn3 334 21 segments «ii-MCM-3 $2i-Board-2 53000/3300 31 hr 28 min

Table 4: Hierarchical Partitioning Results

Note: s-p denotes the mapping of segment 5 onto package p from the package library.

design). We did not folly observe the effect of back-tracking on these examples because of the rapidity
with which the execution times increased.

5.2 Multicomponent Synthesis and Hierarchical Package Design

Tables 5, 6, and 7 present results of multicomponent synthesis and hierarchical package design for the design
examples in Table 3 with the package library shown in Table 2. For each example Table 5 presents: (1)
number of processes; (2) hierarchical partition segments mapped onto packages from the package library
(at level-1, partitioning of processes (synthesized into equivalent RTL designs) into partition segments);
(3) actual number of back-tracks by the hierarchical partitioning and package design algorithm and the
limit on number of back-tracks (BTK); (4) actual cost of the design and the cost constraint; and (5)
execution time. With a larger number of processes it is difficult to present assignment of processes to
partition segments. Table 6 presents the number of processes on each level-1 partition (instead of presenting
individual partitions). With an even larger number of processes, it is difficult to present even details of
level-2 partition segments. Thus, Table 7 presents the following data for all designs in Table 3: (1) number
of processes; (2) number of back-tracks/BTK; (3) actual cost/constraint; and (4) execution time.

We have presented results on multicomponent synthesis and hierarchical package design and hierarchical
RTL partitioning and package design. All these results establish and reinforce the validity of our approach.
An interesting observation that vindicates our choice of the back-tracking algorithm is that in all our
examples the most times we ever back-track is three, in the case of the alv.4 example (Table 7). This is
because the algorithm back-tracks only if it can potentially find a solution with better cost and, also, the
algorithm focuses in on a solution very rapidly.

28

122

Example
No. of
Procs

Segments and Mapping
(<s,-pi)

Num
BkTrk/

j_BTK

Cost/
Constraint

(S)

Exec
Time

(s) Level-3 Levei-2 Level-1 .

Mv Mc 3 52i-Board-1 5H-PGA-5C 5i-PGA-6
EXE

1/10 5600/5000 6

512-PGA-1C 52-PGA-l
FET,DEC

Fifo 3 52i-Boaxd-l 51X-Pl-5 Si-Smalll
FIFO

PRODUCER
CONSUMER

0/10 1550/3000 2.7

Shuffle 5 S2i~Board-2 SH-PGA-4C sx-PGA-4
shuffle-1

0/10 13900/12000 59.8

S12-PGA-4C 52-PGA-4
shuffle-2

513-PGA-4C 53-PGA-4
shuffle-3

«14-PGA-4C 54-PGA-4
shuffle-4

515-PGA-4C S5-PGA-4
output

dynl 5 52i-Boaxd-l sn-Cer-3 5i-SmaJ13
sl_p_l,sl_p_pt
sl_p_sl,sl_p_2

sl_p_st

1/10 1900/2000 3.6

alul 9 «21-Board-1 5U-Cer-2 51-PGA-l
sl_nbp,sl_nap
sl_np,sl_outp

1/10 3100/2500 100.7

52-Tinyl
sl_mp,sl_ap

sl_op
s12-Pl-l 33-Tinyl

sl_dp,sl_sp
dyn2 10 S2i-Board-l 5ii-Cer-3 si-Small-1

s2_p_sl,s2_p_pt
s2_p_2

2/10 3350/3200 212.7

52-Tinyl
s2_p_st,sl_p_st

5i2~Pl-5 53-Smalll
sl_p_sl,sl_p_pt
sl_p_l,sl_p_2

Table 5: Multicomponent Synthesis with Hierarchical Package Design Results

Note: s-p denotes the mapping of segment s onto package p from the package library. Also, at level-1,
mapping of processes to partition segments is presented.

29

123

Example
No. of
Procs

Segments and Mapping
{si-Pi)

Num
BkTrk/

BTK

Cost/
Constraint

(«)

Exec
Time

(s) Level-3 Level-2 Level-1

dyn3 15 52i-Board-l «n-Pl-3 Si-Tiny-3
3 procs

1/10 5000/5000 126.1

512-P1-5 52-Smalll
4 procs

«13-P1-5 S3-Smalll
4 procs

5i4-Pl-5 34-Smalll
4 procs

alu2 18 52i-Board-1 5H-PGA-3C Si-PGA-3
6 procs

1/10 6700/5000 412.8

«12-P1-5 52-Smalll
5 procs

S13-PGA-2C 33-Tinyl
1 proc

54-Tinyl
3 procs

s5-Tinyl
2 procs

514-P1-1 se-Tmyl
1 proc

dyn4 20 52i-Board-l 3H-P1-Ö •si-Smalll
5 procs

0/10 6350/8000 229.3

512-PH 52-Tinyl
1 proc

si3-Cer-2 53-Small2
6 procs

514-Pl-3 <s4-Tray3
3 procs

«is-Pl-4 s5-Tiny4
4 procs

«is-Pl-1 56-Tinyl
1 proc

Table 6: Multicomponent Synthesis and Package Design Results (Contd ...)

Note: s-p denotes the mapping of segment 5 onto package p from the package library. Also, at level-1,
number of processes on each partition segment are presented.

30

124

Example
No. of

Procs
Num BkTrk/

BTK
Cost/Constraint

(S)
Exec

Time (s)

Mv Mc 3 1/10 5600/5000 6
Fifo 3 0/10 1550/3000 2.7
Shuffle 5 0/10 13900/12000 59.8
dynl 5 1/10 1900/2000 3.6
alul 9 1/10 3100/2500 100.7
dyn2 10 2/10 3350/3200 212.7
dyn3 15 1/10 5000/5000 126.1
alu2 18 1/10 6700/5000 412.8
dyn4 20 0/10 6350/8000 229.3
dyn5 25 0/10 8350/8000 349.5
alu3 27 0/10 12700/8000 579
dyn6 30 1/10 9850/9000 1470.7
dyn7 35 2/10 11200/10000 3141
alu4 36 3/10 14100/15000 1549.4
dyn8 40 1/10 11850/12000 1863.5
dyn9 45 1/10 13800/13000 3684.1
alu5 45 2/10 17750/18000 1626.4
dynlO 50 2/10 16850/15000 6452.2

Table 7: Multicomponent Synthesis and Package Design Results (Contd ...)

5.3 Multicomponent Synthesis vs Hierarchical RTL Partitioning

Table 8 presents a comparison of multicomponent synthesis and hierarchical package design and hierarchical
RTL partitioning. The following information is presented for each example: (1) number of processes in the
behavioral description; (2) number of RTL components in a single-chip synthesized design; (3) number of
back-tracks/limit on back-tracks, cost of packaging design, and execution time for (a) multicomponent
synthesis and (b) RTL partitioning; and (4) dollar cost constraint for the design. For each example, the
better dollar cost solution is bold-faced. RTL partitioning yields better designs for smaller examples where
the number of synthesized RTL components is relatively small (< 200). For larger examples multicomponent
synthesis clearly out-performs RTL partitioning in the quality of solutions. Also, the time taken by RTL
partitioning is more than the time taken by multicomponent synthesis by an order of magnitude (two
orders or magnitude for larger examples - e.g., alu4, dyn3).

5.4 Functional Validation

We have presented results on the performance of the multicomponent synthesis and hierarchical package
design algorithm (HPP— Algorithm 4.2) for multicomponent synthesis with hierarchical package design
and hierarchical RTL partitioning and package design for a number of examples. Another important step
is to functionally validate the designs produced. The output of hierarchical partitioning and package
design comprises: (1) in the case of multicomponent synthesis, a set of behaviors (VHDL) (corresponding to
individual register level segments that together constitute the multicomponent design) to be synthesized
into equivalent RTL designs using a high level synthesis system such as DSS [40, 41]; alternately, a set of
RTL design segments in the case of RTL netlists; (2) a set of structures (VHDL) that realizes the hierarchical

31

125

Example
Num
Proc

Num
RTL

Comp

Multicomponent
Synthesis

Hierarchical
RTL Partitioning

Cost (S)
Constr.

Btk/
BTK

Cost
($)

Exec
Time (s)

Btk/
BTK

Cost
(S)

Exec
Time (s)

Mv Mc 3 53 1/10 5600 6 0/10 4250 13.2 5000
Fifo 3 76 0/10 1550 2.7 0/10 1750 6.4 3000
Shuffle 5 379 0/10 13900 59.8 - - - 12000
dynl 5 128 1/10 1900 3.6 0/10 1550 11.9 2000
alul 9 65 1/10 3100 100.7 0/10 1900 6.5 2500
dyn2 10 234 2/10 3350 212.7 0/10 6200 6560 3200
dyn3 15 334 1/10 5000 126.1 0/10 53000 113272 5000
alu2 18 123 1/10 6700 412.8 0/10 5400 2976 5000
dyn4 20 - 0/10 6350 229.3 - - - 8000
dyn5 25 - 0/10 8350 349.5 - - - 8000
alu3 27 161 0/10 12700 579 0/10 10850 6251 8000
dyn6 30 - 1/10 9850 1470.7 - - - 9000
dyn7 35 - 2/10 11200 3141 - - - 10000
alu4 36 205 3/10 14100 1549.4 0/10 53600 109850 15000
dyn8 40 - 1/10 11850 1863.5 - - - 12000
dyn9 45 - 1/10 13800 3684.1 - - - 13000
alu5 45 - 2/10 17750 1626.4 - - - 18000
dynlO 50 - 2/10 16850 6452.2 - - - 15000

Table 8: Multicomponent Synthesis vs Hierarchical RTL Partitioning

multicomponent design; and (3) a binding of behaviors (RTL segments) and structures to appropriate
packages from the package library at each level of the package and design hierarchy. From the viewpoint
of functional validation (1) and (2) are of importance. The functional validation approach consists of: (1)
synthesizing register level designs from the behavior segments using a high level synthesis system such as
Dss(in the case of multicomponent synthesis); and (2) simulating the multicomponent design in VHDL using
the same characteristic set of test vectors used for validating the behavioral specification (see Section 3
— profiling stimuli). We have functionally validated the Move Machine, Fifo, and Shuffle examples by
simulating the output multicomponent designs in VHDL (the other examples — alul-alulO, dynl-dynlO —■
are synthetic and are used for illustrating the capability of the multicomponent synthesis and hierarchical
package design algorithm to handle large designs). In addition to functionally validating these designs
at the VHDL level, we have validated the shuffle exchange example at the layout level by switch level
simulation. We generated the layout of the hierarchical design using the Lager IV silicon compiler [22]. We
extracted switch level models from the layouts and simulated the switch level model using IRSIM, a switch
level simulator.

6 Conclusions and Discussion

We have presented a generic hierarchical partitioning and package design technique for multichip designs. It
takes a generic graph specification (in the case of multicomponent synthesis, a process graph; alternately, an
RTL netlist in the case of RTL partitioning), a set of available packaging options, an overall cost constraint on
the design and generates a multichip design while simultaneously constructing a physical package hierarchy

32

126

for the design. We have demonstrated two applications of this generic technique for multichip design: (1)
hierarchical RTL partitioning and (2) multicomponent synthesis with hierarchical package design.

We have presented results for both approaches and also compared the performance of the approaches with
respect to the quality of designs produced and execution times for a number of typical design examples, RTL
partitioning and package design yields good results for examples where the number of RTL components in
the synthesized design are less than 200. But RTL partitioning and package design does not handle thermal
(switching activity) constraints on the design and cannot be used for designs where thermal considerations
are important. When partitioning at the RTL netlist level, the design architecture is frozen (during high level
synthesis). Alternate multichip designs cannot be explored during hierarchical RTL partitioning, whereas
multicomponent synthesis explores the design space by considering alternate implementations during high
level multicomponent synthesis. Also, thermal profiling of RTL designs is too time consuming (Section 3
and is not viable for large designs. Multicomponent synthesis with hierarchical package design yields
better results for the larger examples and also considers switching activity constraints on the design. Also,
execution times for multicomponent synthesis are much lower than execution times for RTL partitioning for
almost all our examples. Thus, multicomponent synthesis with hierarchical package design is the preferred
approach for large designs and high performance packaging technology.

References

[I] M. Beardslee, C. Kring, R. Murgai, H. Savoj, R.K. Brayton, and A.R. Newton, "SLIP: A Software Environment
for System Level Interactive Partitioning," Proc. ICCAD-89, pp. 280-283, 1989.

[2] R. Burch, F. N. Najm, P. Yang, and T. Trick, "A Monte Carlo Approach for Power Estimation," IEEE Trails.
Very Large Scale Integration (VLSI) Systems, Vol. 1, No. 1, pp. 63-71, Mar. 1993.

[3] R. Camposano and W. Wolf (Eds.), Eigh-Level VLSI Synthesis, Kluwer Academic Publishers, Boston, 1991.

[4] M.A. Cirit, "Estimating Dynamic Power Consumption of CMOS Circuits," Proc. ICCAD-87, pp. 534-537, Nov.
1987.

[5] P.J. Drongowski, "An Organization-Level Story Board for Agent - A VLSI Designer's Assistant," Internal Report,
DSRG, CES Dept, Case Western Reserve University, Jan 1987.

[6] R. Dutta, "Distributed Design-Space Exploration for High-Level Synthesis Systems," Master's Thesis, Dept. of
Electrical and Computer Engineering, University of Cincinnati, OH, 1991.

[7] R. Dutta, J. Roy, and R. Vemuri, "Distributed Design-Space Exploration for High-Level Synthesis Systems,"
Proc. 29th Design Automation Conference, pp. 644-650, June 1992.

[8] CM. Fiduccia and R.M. Mattheyses, "A Linear-Time Heuristic for Improving Network Partitions," Proc. 19th
Design Automation Conference, pp. 175-181, June 1982.

[9] D.D. Gajski, N.D. Dutt, A.C-H. Wu, and S.Y-L. Lin, High-Level Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers, 1992.

[10] R. Gupta and G. De Micheli. "Partitioning of Functional Models of Synchronous Digital Systems," Proc. ICCAD-
90, Santa Clara, pp. 216-219, Nov. 1990.

[II] R. Jain, "High-Level Area-Delay Prediction with Application to Behavioral Synthesis," Ph.D. Dissertation,
Department of Electrical Engineering, University of Southern California, July 1989.

[12] R. Jain, M.J. Mlinar, and A.C. Parker, "Area-Time Model for Synthesis of Non-Pipelined Designs," Proc.
ICCAD-88, pp. 48-51, Nov. 1988.

[13] R. Jain, A.C. Parker, and N. Park, "Predicting Area-Time Tradeoffs for Pipelined Designs," Proc. 29th Design
Automation Conference, pp: 35-41, June 1987.

[14] S.C. Johnson, "Hierarchical Clustering Schemes," Psyckometrika, Vol. 32, No. 3, Sept. 1967.

[15] S. M. Kang, "Accurate Simulation of Power Dissipation in VLSI Circuits," IEEE J. of Solid-State Circuits, Vol.
21, No. 5, pp. 889-891, Oct. 1986.

33

127

[16] B.W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs," The Bell System
Technical Journal, pp. 291-307, Feb. 1970.

[17] K. Kucukcakar and A.C. Parker, "CHOP: A Constraint-Driven System-Level Partitioned" PTOC. 28th Design
Automation Conference, pp. 514-519, June 1991.

[18] K. Kucukcakar, "System-Level Synthesis Techniques With Emphasis on Partitioning and Design Planning,"
Ph.D. Dissertation, Dept. of Electrical Engineering-Systems, University of Southern California, CA, Oct. 1991.

[19] N. Kumar, "High Level VLSI Synthesis for Multichip Designs," Ph.D. Dissertation (Draft), Dept. of Electrical
and Computer Engineering, University of Cincinnati, Cincinnati, OH, October 1994.

[20] N. Kumar, L. Rader, S. Katkoori, and R. Vemuri, "Profile-Driven Behavioral Synthesis for Low Power VLSI Sys-
tems," Technical Report ECE-DDE-94-01, Dept. of Electrical and Computer Engineering, University of Cincinnati,
June 1994.

[21] F.J. Kurdahi, "Area Estimation of VLSI Circuits," Ph.D. Dissertation, Dept. of Electrical Engineering, Univer-
sity of Southern California, CA, 1987.

[22] Lager Tool Set, University of California, Berkeley, 1991.

[23] E.D. Lagnese and D.E. Thomas, "Architectural Partitioning for System Level Design," Proc. 26th Design Au-
tomation Conference, pp. 62-67, June 1989.

[24] E.D. Lagnese and D.E. Thomas, "Architectural Partitioning for System Level Synthesis of Integrated Circuits,"
IEEE Trans. Computer-Aided Design, Vol. 10, No. 7, pp. 847-860, July 1991.

[25] M.C. McFarland, "Computer-Aided Partitioning of Behavioral Hardware Descriptions," Proc. 20th Design Au-
tomation Conference, pp. 472-478, June 1983.

[26] M.C. McFarland, A.C. Parker, and R. Camposano, "Tutorial on High-Level Synthesis," Proc. 25th Design
Automation Conference, pp. 330-336, June 1988.

[27] M.C. McFarland, A.C. Parker, and R. Camposano, "The High-Level Synthesis of Digital Systems," Proc. of the
IEEE, Vol. 78, No. 2, pp. 301-318, Feb. 1990.

[28] M.C. McFarland and T.J. Kowalski, "Assisting DAA: The Use of Global Analysis in an Expert System," Proc.
ICCAD-86, pp. 482-485, Oct. 1986.

[29] M.C. McFarland and T.J. Kowalski, "Incorporating Bottom-Up Design into Hardware Synthesis," IEEE Trans.
Computer-Aided Design, Vol. 9, No. 9, pp. 938-950, Sept. 1990.

[30] M.J. Mlinar, "Control Path/Data Path Tradeoffs in VLSI Design," Ph.D. Dissertation, Department of Electrical
Engineering-Systems, University of Southern California, CA, June 1991.

[31] J. Monteiro, S. Devadas and B. Lin, "A Methodology for Efficient Estimation of Switching Activity in Sequential
Logic Circuits," Proc. 31st Design Automation Conference, pp. 12-17, June 1994.

[32] F. N. Najm, "Transition Density: A New Measure of Activity in Digital Circuits," IEEE Trans. Computer-Aided
Design, Vol. 12, No. 2, pp. 310-323, Feb. 1993.

[33] J. Niehaus and B. Fleck, "Novel IC shuffles parallel-processing data," Electronic Products, pp. 42-50, Aug. 1986.

[34] John Ousterhout, "Using Crystal for Timing Analysis," Electrical Engineering and Computer Sciences, Univer-
sity of California at Berkeley, 1987.

[35] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling in Automatic Data Path Synthesis," Proc. 24th Design
Automation Conference, pp. 195-202, June 1987.

[36] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling for the Behavioral Synthesis of ASIC's," IEEE Trans.
Computer-Aided Design, Vol. 8, No. 6, pp. 661-679, June 1989.

[37] P.G. Paulin and J.P. Knight, "Algorithms for High-Level Synthesis," IEEE Design & Test of Computers, pp.
18-31, Dec. 1989.

[38] T.S. Payne and W.M. vanCleemput, "Automated Partitioning of Hierarchically Specified Digital Systems,"
Proc. 19th Design Automation Conference, pp. 182-192, 1982.

34

128

[39] M.L. Resnick, "SPARTA: A System Partitioning Aid," IEEE Trans. Computer-Aided Design, Vol. 5, No. 4, pp.
490-498, Oct. 1986.

[40] J. Roy, N. Kumar, R. Dutta, and R. Vemuri, "DSS: A Distributed High-Level Synthesis System," IEEE Design
& Test of Computers, pp. 18-32, June 1992.

[41] J. Roy, "Parallel Algorithms for High-Level Synthesis," Ph.D. Dissertation, Dept. of Electrical and Computer
Engineering, University of Cincinnati, OH, Feb. 1993.

[42] K. Roy and S. Prasad, "Circuit Activity Based Logic Synthesis for Low Power Reliable Operations," IEEE
Trans. Very Large Scale Integration (VLSI) Systems, Vol. 1, No. 4, pp. 503-513, Dec. 1993.

[43] Y. Saab and V. Rao, "An Evolution-Based Approach to Partitioning ASIC Systems," Proc. 26th ACM/IEEE
Design Automation Conference, pp. 767-770, June 1989.

[44] M. Shih, E.S. Kuh, and R-S. Tsay, "Performance-Driven System Partitioning on Multi-Chip Modules," Proc.
29th Design Automation Conference, pp. 53-56, June 1992.

[45] C-Y Tsui, M. Pedram, A. M. Despain, "Exact and Approximate Methods for Calculating Signal and Transition
Probabilities in FSMs," Proc. Slst Design Automation Conference, pp. 18-23, June 1994.

[46] F. Vahid and D.D. Gajski, "Specification Partitioning for System Design," Proc. 29th Design Automation
Conference, pp. 219-224, June 1992.

[47] R. Vemuri, "Genetic Algorithms for Partitioning, Placement, and Layer Assignment for Multichip Modules,"
Ph.D. Dissertation, Dept. of Electrical and Computer Engineering, University of Cincinnati, OH, July 1994.

[48] R. Vemuri, J. Roy, P. Mamtora, and N. Kumar, "Benchmarks for High Level Synthesis," Technical Report
TM-DDE-91-11, Dept. of Electrical and Computer Engineering, University of Cincinnati, June 1991, Revised
November 1991.

[49] R. Vemuri et al, "An Integrated Multicomponent Synthesis Environment for Multichip Modules," Computer,
pp. 62-74, April 1993.

[50] R. Vemuri et al, "Experiences in Functional Validation of a High Level Synthesis System," Proc. 30th Design
Automation Conference, pp. 194-201, June 1993.

[51] R. Vemuri and R. Vemuri, "Partitioning for Multichip Modules," Electronics Letters, Vol. 30, No. 16, pp.
1270-1272, Aug. 1994.

[52] R. Vutukuru, "Test bench compilation for synthesized multicomponent designs," Master's Thesis, University of
Cincinnati, 1992.

[53] R.A. Walker and D.E. Thomas, "Behavioral Transformation for Algorithmic Level IC Design," IEEE Trans.
Computer-Aided Design, Vol. 8, No. 10, pp. 1115-1128. Oct. 1989.

35

129

APPENDIX H:

Performance Modeling and Tradeoff Analysis
During Rapid Prototyping1

Jeffrey Walrath, Karam S. Chatha, Ranga Vemuri,
Naren Narasimhan and Vinoo Srinivasan

Laboratory for Digital Design Environments
Department of ECE &; CS, University of Cincinnati

Cincinnati, OH 45221-0030
Ph: 513-556-4784; Email: ranga.vemuri@uc.edu

Abstract

Tradeoff analysis is a central aspect of any design process. Languages and tools to support
performance modeling and evaluation are necessary to facilitate rapid prototyping of designs.
A performance modeling and tradeoff analysis environment reduces the overall design time
of both the prototype and the final product, by helping designers in determining which pa-
rameters of a design are critical for meeting a set of desired performance goals. This paper
describes a case study in performance modeling using a language called PDL (Performance
Modeling Language). The PDL system supports tradeoff analysis and performance visualiza-
tion. This paper also addresses some of the key issues for successful tradeoff analysis during
rapid prototyping and explain how many features of PDL make it a suitable choice for this
purpose.

1 Introduction

During any design process, many decisions are made which affect the overall performance of
the design. Many such decisions result from detailed tradeoff analysis among several related
attributes of the design. For example, choice of the input clock frequency depends partly upon
the desired upper bound on power consumption and the desired lower bound on the throughput
rate. Decisions such as these are made at various levels of the design process from specification
to implementation. In order to make effective design choices, the design environment and
supporting tools must be well suited for performing tradeoff analysis throughout the design
process, at multiple levels of abstraction.

1This work was partially supported by the ARPA RASSP program and monitored by the Wright Lab, US-AF
under contract number F33615-93-C-1316 and by the Semiconductor Research Corporation under contract number
DJ-293.

130

Performance modeling and tradeoff analysis involves developing a model of the design at some
level of abstraction, behavioral, macro-level, register-transfer level etc. During model eval-
uation, various parameters of the model are altered and their effect on other parameters is
observed. Based on this data further design choices are made. The model is modified accord-
ingly, and the process of performance evaluation and tradeoff analysis repeated. This process
continues until an acceptable design is reached which meets all the required performance goals.

For effective tradeoff analysis to occur during rapid prototyping, the design environment should
have the following features: (1) Modeling at any level of abstraction must be supported since
tradeoff analysis occurs at various levels during the design process; (2) The modeling environ-
ment must lend itself to reusability. Reuse of models is very critical because it reduces the
time spent in writing a model for each new version of the design. (3) The performance evalu-
ation engine should be flexible enough to partially evaluate a model when variations in some
parameters are unknown. This facilitates incremental analysis of the model; (4) The modeling
environment must be easy to use so that the development and analysis of performance models
can be done quickly and efficiently.

We have developed a modeling and tradeoff analysis environment, the PDL System, which
meets all these criterion and is well suited for use during rapid prototyping [1]. A PDL
program declares design objects (various kinds of modules, nets, and ports) that can appear
in a design. In addition, the containment and connectivity relationships among the various
kinds of objects can also be declared in the PDL program. When a specific design in the form
of a PDL net-list file is compiled with a PDL program, the compiler will be able to determine
if the net-list contains objects of the kind declared in the PDL program and whether the net-
list structure conforms to the object composition relationships (containment and connectivity)
which were declared in the PDL program.

In addition, a PDL program declares various types of attributes and attaches them to the
design objects. Attribute evaluation rules can also be specified and attached to the design
objects. A PDL program does not specify any order among these rules; they are viewed as
mathematical equations. Given a design net-list that conforms to the PDL program, the PDL
compiler generates a global attribute dependency graph and automatically infers a complete
evaluation order among the various attribute evaluation rules. An executable performance
model containing the proper evaluation sequence for all the evaluation rules is generated.

Figure 1 illustrates the PDL System and design process for generating and evaluating perfor-
mance models. Once a model has been compiled, the evaluator can be configured to evaluate
and collect data in several different ways. In the simplest case, a model can be completely eval-
uated with a complete set of input data. A configuration can be specified that allows for the
collection of data for graphical analysis or tabulation. This includes allowing the specification
of ranges of values for particular input attributes. Incremental evaluation is also possible with
a performance model (the feedback loop in the figure). During evaluation, only some of the
input data is supplied with the result being another performance model. Further evaluation
on this model can be done with more input data specified as necessary.

This paper outlines the features of the PDL System and through a hardware/software co-
design example illustrates how the PDL system can be used for effective tradeoff analysis
during rapid prototyping. The rest of this paper is organized as follows: Section 2 introduces
the hardware/software co-design example to be used as the case study in this paper. Section
3 develops the PDL performance model of the co-design example and, through this example,

131

VHDL EDIF NDL

Configuration

„__ __ i , ». Performance
PDL Program—*■ Compiler \ Performance) Evaluator —*" R«^

Figure 1: Overview of the PDL System

introduces the PDL language itsel£ Section 4 describes the performance evaluation and trade-
off analysis process using the PDL system. Section 5 discusses the results of this analysis for a
specific co-design example: a JPEG-like image compression scheme. Section 6 contains some
concluding remarks.

2 Hardware/Software Co-design with Coprocessors

Rapid prototyping for hardware-software co-design of embedded processor and coprocessor
system is current research area. The specification for co-design is usually represented as a
task graph where nodes represent tasks and edges represent communication channels [2]. For
hardware-software co-design, the goal is to determine which tasks should be implemented in
hardware or software based upon some performance criterion. When the target architecture
is an embedded system, several hardware tasks can be implemented as ASICs and all of the
software tasks are allocated to execute on an embedded processor. In a coprocessor system,
only a single task can be allocated to hardware and all other tasks are allocated to software.
Again all software tasks usually run on the same processor. A coprocessor is a configurable
plug-in board connected to a main processor such as a workstation or a personal computer.
Components of the coprocessor board include a programmable chip, interface memory, and a
predefined interface protocol to the main computer [3].

While developing a performance model for co-design, several factors shall be considered. From
a software perspective, tasks have certain properties that govern their execution sequence. If
all tasks are bound to execute in software, then only one task can execute at a time. The
next scheduled task can not begin execution until all preceding tasks are finished. Figure 2
is an example of a task graph. Although there are tasks which appear to be independent of
each other, an execution order is associated with this task graph since one task can execute
at a time. For this example, task 6 can not begin executing until tasks 3,4, and 5 finish. This
execution order is referred to as the the task schedule for a particular task graph.

Another feature of hardware software co-designs is the inherent parallelism available between
the hardware and software. This is achieved by having one hardware task executing in the
coprocessor simultaneous with a software task executing in the main processor. Figure 3 shows
a simple task graph were hardware software parallelism can be exploited. When none of the
tasks are bound to hardware, the only task schedule is task 1 followed by task 2 and so forth.
If task 2 where bound to hardware, then the task schedule could be pipelined so that task 2
and 3 operate simultaneously. Pipelining can occur with a data buffer between task 2 and 3.

132

/
Task

#3

Task
#1

Task
#2

/ Task
#6

/
V
\ Task

«4 \

Task
#5

Figure 2: Example Task Graph

After task 2 finishes executing the first time, the data would move to the buffer at the input of
task 3. Then, the next time task 2 executed, task 3 would also execute. The buffer is necessary
to ensure task 2 can not write to the same memory being read by task 3 during execution.

Software Hardware Software

Time
tl t2 6 t4 t5 t6 •■•

1 X X X • •a

Task No. 2 X X X • ••
3 X X ■ -■

Table: Task Schedule

Figure 3: Exploiting Parallelism in Task Graph

If the target architecture is a coprocessor board, another modeling parameter is the com-
munication time between tasks when one task is in software and the other is in hardware.
The computer can not transmit data directly to the coprocessor. Instead, data is transmit-
ted through memory located on the coprocessor board. Because this memory is located on a
board which is connected to a slower bus interface, communication time necessary to read and
write data from the coprocessor to the computer's main memory is slower than usual memory
transfers within the computer. This will have a noticeable impact on estimating execution
time of a particular set of bindings. In most co-design problems, the communication between
the hardware is such that one task writes to the coprocessor memory prior to execution of the
hardware task. Once the hardware task finishes, the next software task reads the results from
the coprocessor memory.

The expression for calculating the execution time of a task graph is based on a sum of the
execution time for each task. However, with the hardware parallelism that can occur due
to pipelining, it is not a simple summation of execution times. In addition, there is a task
schedule that has to be specified to start and finish the pipeline. All of these factors must be
expressed by the equations for calculating total execution time.

133

Calculating the execution time for an individual task is given by the equation:

ExecutionTime — BindingTime + ^T RdOverHd +]P WrOverHd (1)

RdOverHd = NumVariaUes * ReadTime (2)

WrOverHd = NumVariaUes * WriteTime (3)

In this equation, BindingTime is the execution time for a particular task depending upon a
hardware or software binding. As previously mentioned, tasks which must read or write to the
coprocessor memory have an associated communication time related to transferring the data.
Recall that a single task can have several edges which are input to the task. For each task on
the input which transmits data via coprocessor memory, RdOverHd will be a non-zero value.
If coprocessor memory is not involved, then RdOverHd will be zero for that particular input
edge. Thus, the execution time includes adding all the time necessary for reading data from
the coprocessor memory. A similar addition is used for writing to coprocessor memory for all
the outputs and is accounted for by WrOverHd,

Calculating total execution time is given by the equation:

GlobalTime = ^ max(taskl'ExecutionTime, task^ ExecutionTime,...) (4)
iaskl,task2,...

GlobalTime is a sum of the execution times for each task. A particular task is scheduled and
the execution time is ExecutionTime. Another task is scheduled and its execution time is
added to the previous time. This process continues until all tasks have been scheduled with
GlobalTime accumulating the execution times for each task. Because pipelining allows more
than one task to execute at a time, the total global time only increases by the maximum
ExecutionTime of all tasks which are scheduled to execute simultaneously.

3 Performance Model for Co-designs

In this section, we develop a suitable performance model in PDL for co-design performance
estimation. PDL has three basic object types for representing designs: modules, carriers, and
ports. A module can be used to represent any type of component typically found in a design.
A carrier is commonly used for representing transport components such as connections, wires,
buses and communication channels. Ports are objects used primarily for representing the
connectivity among various design components. [4]

In the co-design example, a task graph represents the overall design and nodes in the task
graph represent tasks. Connections between tasks are considered directed edges with no two
tasks having more than one directed edge between them. To represent a task graph in a PDL
model, the first step is to define the various task graph components with PDL objects. Figure
4 shows the PDL definitions for two ports and a carrier which collectively represent edges in
a task graph. Two ports are defined such that there is a unique input and output port which
represents a directed edge.

134

port task_out-port carrier edge
end port; ports

input: taskjout_port;
port taskJn.port QUtput . taskJn_port.
end port; end carrier;

Figure 4: PDL declaration for representing edge and related ports

In the carrier declaration edge there is a ports section. In PDL, various objects can contain
references to other objects; this is known as containment. A carrier object may only contain
ports. However, a module object may contain references to other modules, carriers, and ports.
Containment serves two useful purposes. First, it allows the parent object, in this case the
carrier, access to information within any contained object. Secondly, if two different PDL
objects, perhaps two modules, contain a reference to the same port, then the two objects are
considered connected to each other through that port. Figure 5 shows the PDL definition for
a task module which represents tasks in the task graph and the codesign module which
represents the entire task graph.

module codesign module task
ports ports
inputs{} : task_out_port; inputs{} : taskJn_port;
outputs{} : taskJn_port; outputs{} : task_out_port;

carriers end module;
connections {} : edge;

modules
tasks{} : task;

end module;

Figure 5: PDL declaration for representing task and codesign

In the task module there are containment declarations for inputs and outputs. Within a
task graph, a task may have any number of other task edges as input. Additionally, a task
can also have output edges that branch to other tasks. In the declaration, the {} notation is
used to denote a set of objects, with a set containing zero or more objects. Thus, for the task
there will be a set of input and output edges. In a containment declaration, when the {} is
not used, this means the reference is to a single object.

Module codesign is used to represent the entire task graph. It contains a definition for a
set inputs. These are all the inputs to the task graph (there may be more than one but is
usually the root of the task graph). Another definition declares a set of outputs. These are
all the outputs from the task graph which are usually the final tasks in the task graph to
execute. In addition, there are definitions for connections which are all the edges in the task
graph and tasks which are all the tasks in the graph. The codesign module represent all the
containment relationships existing in a graph.

Once all the objects representing components in the task graph have been specified, the next
step for developing a model is to introduce attributes and attribute evaluation rules in the

135

objects. Attributes are parameters that are propagated and computed in the PDL model. An
evaluation rule describes how to perform the calculation of an attribute in an object. Figure 6
shows the declarations of the port and carrier objects with all their attributes and evaluation
rules.

type
hw_sw_bind : enum {hw,sw};

end type;

port task_out.port
attributes
primitive num.var : int;
tl_bind : hw_swjbind;
t2_bind : hw_sw_bind;
wr_overhd : real;
rdjoverhd : real;
dynamic done, t2_job : int := 0;

rules
wr_overhd =
wr_comm(tlJbind, t2_blnd, num_var);

rd .overhd =
rd_comm(tl_bind, t2_bind, num_var);

end port;

port taskJn_port
attributes
t2_bind : hw.sw_bind;
rdjoverhd : real;
dynamic done : int := 0;
dynamic t2_job : int := 0;

end port;

carrier edge
ports
input : task_out_port;
output : task_in.port;

rules
input't2J)ind = output't2_bind;
input't2_job = output't2_job;
output'rd_overhd = input'rd_overhd;
output'done = input'done;

end carrier;

Figure 6: Attributes for edge carrier and related ports

Attributes are defined in the attributes section of an object. An attribute can be any allowable
data type. Some of the types available are integer, real, enumerated type, heterogeneous
records, lists, and a variety of combinations of these. An attribute is associated with the
object where it was declared and not with the object where the attribute is given a value or
referenced. Thus, when an attribute is used in an expression where it is not defined within
the object, it is referenced as object'attribute. For example, in the edge carrier there is a
reference to input't2Jbind. The port input is declared as a contained port and within the
port there is an attribute declaration for t2_bind.

Along with defining the type, the attributes section is used to define an attribute as primitive
or non-primitive. An attribute is non-primitive unless explicitly declared as a primitive. A
primitive attribute is an attribute which will not have an evaluation rule for defining how
to calculate it. Instead, a primitive attribute will have its value set by the user during the
execution of the performance model. For example, in the task_out_port port the primitive
attribute num_var is the number of variables being transmitted from one task to another. This
value can not be calculated because it depends on the actual task graph being modeled and is
not based on any information within the model. Thus, when the model is executed the user
will supply the number of variables being transmitted.

In addition to being primitive, an attribute can also be dynamic or static. An attribute is
considered static unless declared dynamic. During model execution, all static attributes are
calculated once. These are attributes which are not based upon some dynamic stream of
events, but instead are values which need to be calculated once since they are independent of

136

other events occuring within the model. Conversely, dynamic attributes are not single values
but streams of single values. As a model executes, it may be re-evaluated any number of times.
During each re-evaluation cycle, there is a corresponding value for the dynamic attribute. For
example, if there are 5 evaluation cycles, then every dynamic attribute will have 5 distinct
values. This is similar to simulating the performance model based on a stream of events which
occur.

Along with defining attributes and types, evaluation rules also need to be defined for various
attributes. It is not necessary that an attribute has an evaluation rule in the same object where
it was declared. For instance, in the task_in_port, all the attributes are given values by the
edge carrier object. Thus, the taskJLn_port port has no evaluation rule for these attributes.
This is how information is transmitted among various objects in a PDL model. An attribute is
declared for some object, but another object has an evaluation rule for the attribute. Another
object can reference the value of the attribute after it has been evaluated. For example, in the
edge carrier, the done attribute of output is given an evaluation rule where it is the same as
input'done. Any other object which would contain the same input port could then read the
value of done.

Figure 7 shows the task module with all its corresponding attributes and evaluation rules.
There are several evaluation rules which transfer information between the input and output
of the task. These attributes are used for defining when a task has been scheduled and to
determine the bindings of connected tasks. Recall that if a task is in hardware there is a
communication overhead which must be calculated. Attribute comm_overlid will be 0.0 if
the task is not bound to hardware otherwise it will be a total of rd_overhd and wr_overhd
times which were calculated in the port using equations 2 and 3. The exectime attribute is
either the hardware or software time for the task, and the time attribute is the sum of the
execution time and communication time. This is the total execution time for the task when
it is scheduled. Because every dynamic attribute is re-evaluated on each evaluation cycle, if a
task has not been scheduled it does not add to the total time during that specific evaluation
cycle. A new task is scheduled each evaluation cycle.

The last definition is the code sign module. Figure 8 shows the definition with all the at-
tributes and evaluation rules. In the rules section, there are several evaluation rules which set
attributes in the contained object tasks. The {} indicates that attribute num_jobs in task
is to be set to the primitive value num_jobs. The evaluation rule for global.time is similar
to equation 4. There is an evaluation rule which sets the global.time in each task to the
current global.time. Thus, after each task is scheduled and calculated, a new global.time
is determined by taking the maximum of all the times from each task.

All of these evaluation rules have been defined in the PDL model in no particular order.
However, there is an inherent order associated that is implied by these rules. If a rule depends
upon the value of another rule, then that rule can not be evaluated until the other rule is
done first. These evaluation rule dependencies produce a global attribute dependency graph.
Figure 9 illustrates just some of the dependencies among the various attributes in the task
module. Primitive attributes do not depend upon other attributes and are the leaf nodes in
the dependency graph (those attributes in the figure with boxes around them). A directed
dependency graph may not contain any cycles among the attributes.

137

module task
ports
inputs{} : task_in_port;
outputs{} : taskjout_port;

attributes
primitive binding : hwjswjoind;
primitive hwtime : real;
primitive swtime : real;
primitive schdjio : int;
primitive dynamic schd_task : int := 0;
dynamic time : real := 0.0;
dynamic job : int := 0;
dynamic job_diff : int := 0;
dynamic donein : int := 0;
dynamic donejout : int := 0;
dynamic exec:int := 0;
dynamic globaljtime : real := 0.0;
numjobs : int;
rd_overhd : real;
wrjoverhd : real;
commjoverhd : real;
exectime : real;

rules
inputs{}'t2_bind = binding;
inputs {}'t2_job = curr job;
outputs{}'tlJbind = binding;
exectime = if (binding == hw)
then hwtime
else swtime
endif;

doneJn =
eval(foreach p in inputs{ curr p'done });

jobjdiff = curr job -
min(foreach p in outputs{ p't2.job });

rd_overhd =
sum(foreach p in inputs{ p'rd_overhd });

wrjoverhd =
sum(foreach p in outputs{ p'wr_overhd });

exec =
begin
temp:int;
if ((doneJn == 1) and (curr job < num jobs)

and (job_diff < 1))
then if (binding == hw)
then temp:=l;
else if (schd_no == schdJask)

then temp:=l;
else temp:=0;
endif;

endif;
else temp:=0;
endif;
return temp;

end;
comm_overhd = if (binding == hw)
then 0.0
else wrjoverhd + rd_overhd
endif;

time = if (exec == 1)
then globaLtime + exectime + commjoverhd
else time
endif;

job = if (exec == 1)
then job + 1
else job
endif;

done_out = if (exec == 1)
then 1
else donejout
endif;

outputs {}'done = donejout;
end module:

Figure 7: Attributes for the task module

138

module codesign
ports
inputs {} : taskjout_port;
outputs{} : taskin_port;

carriers
connections{} : edge;

modules
tasks {} : task;

attributes
primitive numjobs : int;
primitive dynamic schdjask : int := 0;
dynamic globaLtime : real := 0.0;

rules
tasks{}'niunjobs = num.jobs;
tasks{}'schd_task = schd_task;
globaLtime =
max(foreach t in tasks{t'time});

tasks{}'globaljtime = curr global_time;
end module;

Figure 8: Attributes for the codesign module

!ec global.' time commoverhd

\ / \ wr_bverhd rd_overi

|schd_task |

Figure 9: Example Dependency Graph

4 Tradeoff Analysis Using the PDL System

Once a PDL model is written, the next step is to compile it. As mentioned previously, a PDL
model by itself is not an executable model. An executable model is only generated when the
PDL model is coupled with a specific design. This is the role of the compiler. It takes a PDL
model and a design (a specific task graph in the case of our example) as input and generates
an executable performance model. During the performance model generation, the order for
evaluating all the various attributes is determined. The result of compilation is an executable
performance model has a correct evaluation order for all expressions. Figure 10 is a detailed
overview of the PDL system and the flow of a PDL program and net-list through an analysis
cycle.

Once a performance model has been generated, the user executes the model with the PDL
evaluator. Model evaluation can be done in several ways depending upon the configuration
and input to the evaluator tool. A performance model can be completely evaluated when all

10

139 >

Header
Info "

VHDL Net-List

i
VHDL2PDL

Design Net-Ust file (.pnf)
Aliases file (.pal)

PDL _
Program

(.pdl)

PDL Compiler

PDL Auxiliary file
-(.paux)

Attribute
Data file
(.data)

».Executable
Performance
Model (.pdlif)

Auxiliary File
(.paux)

CAD
/ Tools

Procedure Plot file Procedural \ P'°5 fcnuplot)
(.plot) Interface

.Primitive Attribute
Data \l Tabl°*

J_
PDL Evaluator

Figure 10: PDL System Overview

the primitive attribute values are supplied; this is known as full evaluation. Another option
is to evaluate the performance model with only some of the primitive data specified. This is
known as partial evaluation. In addition, the evaluator can be configured to collect data for
analysis based on ranges of values for primitive attributes instead of single values. Finally, the
evaluator can be linked into an existing CAD/CAE tool to perform data analysis.

Full evaluation of a model begins with a performance model. All primitive attributes that
were defined in the PDL model must be defined by the user in an input data file. When the
evaluator is invoked, both the performance model and data file are read, and all expressions
are evaluated with the results written to another performance model. Since the model was
fully evaluated, all evaluation rules will have been replaced with their corresponding evaluation
result. Thus, the resulting performance model will contain nothing but attributes and their
evaluated values.

In addition to full evaluation, the user can partially or incrementally evaluate a model. Instead
of specifying a complete set of values for all primitive attributes, the user can specify only some
of the data for the primitive attributes. When the evaluator is invoked, the performance model
and data file are read, all evaluation rules are partially evaluated and a residual performance
model is generated. The residual model model will still contain (partially evaluated) evaluation
rules for various attributes which have been reduced and simplified with respect to the original
expression. The residual model can be further evaluated when more primitive attribute data
is available.

There are several cases where partial evaluation can be useful during tradeoff analysis. During
analysis, there may be some primitive attributes of interest that need analysis as to their effect
on the designs performance. Evaluating a large model several times with primitive attributes
which do not change between successive evaluations can be costly. The solution is to partially
evaluate the performance model with only those primitive attributes which do not change. All
evaluation rules are evaluated and whenever possible reduced to depend only on those primitive
attributes which have not been specified. This results in a simpler performance model that
can then be used in successive evaluations with the remaining primitive attributes specified.

11

140

This results in the elimination of redundant evaluation of unchanging evaluation rules which
helps to improve data collection.

In addition to evaluating a model with single data points, the evaluator can be configured to
collect data for ranges of primitive values. For example, instead of setting a primitive attribute
to one particular value, the user can specify that a primitive attribute can be a range of values.
Then during execution, the model is evaluated with the specified attribute set to each value
in the range. Any number of primitive attributes can be setup to have ranges of values. In
addition, the evaluator can be configured to collect data on any attribute attribute within
the model, primitive or non-primitive. Two types of data collection is possible: Data can be
collected in a format suitable for two or three dimensional plots, or the evaluator can collect
data for any number of attributes and store the results in tabular form.

In the case where a designer may need to collect data in a particular fashion not handled by
the evaluator, the evaluator exists as a C run-time library. Contained in the library are several
functions which together constitute a procedural interface to the evaluator. The user can use
these functions to setup a performance model and collect data in a form suitable for their
own needs. Thus, the library can be used to read a performance model, set values for various
attributes, evaluate the model, restore the performance model to a previous state, and many
other activities.

5 Tradeoff Analysis for a Co design Example

The co-design model written in PDL and discussed in Section 3 is flexible enough to perform
performance modeling for many different types of task graphs. In addition, any number of tasks
can be bound to hardware or software. In this section, we discuss results of using this model for
a specific codesign example involving a JPEG-like compression/decompression scheme [5, 6].
The target architecture was a coprocessor system. Tradeoff analysis was performed with the
PDL model to determine which task to implement in hardware. Figure 11 shows the task
graph for the compression part of the JPEG algorithm in terms of objects in the PDL model.
Arrows in the figure represent the connectivity among the various PDL objects.

■DOT

task

■•^^•^^^"^•^^•TQI uantization
edge

o
a

task

ZigZag
edge

o o
°r s

task

codesign

o

e

RLE
&

Huffman
task

Figure 11: Task Graph for JPEG

First step in performing tradeoff analysis was estimating the hardware and software times for
each task. Obtaining software time involved using existing software profiling tools to time each
of the tasks in the software version of the JPEG algorithm. In this case, all software times
were collected with timing functions on a Pentium system containing a P100 microprocessor,

12

141

256 kilobytes of standard cache, and 16 megabytes of main memory. Estimating the hardware
execution times was accomplished with a synthesis tool [7] that generated a register transfer
level design for each task. In addition the synthesis tool estimated the execution times for each
RTL design. Times were estimated for a 2 micron CMOS technology. Table 1 shows estimated
hardware and measured software execution times for the various JPEG tasks. These times are
for each task performing its respective job on 16 pixels at a time.

Task Hardware Software

DCT 8.4 ps 371.3 [is
Quantization 0.6 fis 7.56 [is

ZigZag OAps 1.63 fjs
RLE and Huffman Encoding 884 ya 18.48 (is

Table 1: Estimated Task Times

There are several aspects of any task which affect its behavior in hardware or software. Tasks
which are very mathematically intensive tend to have better performance in hardware than
software because of hardware optimizations made by the the synthesis tool. However, task
which contain many control and data flow statements are better suited for software because
the synthesized control hardware is far more complex than its software counterpart. Execution
times in table 1 illustrate these facts. The DCT (Discrete Cosine Transform) is almost entirely
mathematical and as such performs better in hardware than software. However, Huffman
encoding is a control oriented algorithm containing very few arithmetic operations.

The next step in the analysis process was to use the PDL model to determine execution times
for the task graph with each task bound to hardware. This was done by compiling the PDL
program with the design for the JPEG task graph. Four data files were created as input to the
evaluator with each file binding a single task to hardware. The model was setup to estimate
execution time for an input file that contained 4080 pixels. In addition, all task schedules were
defined for pipelining since the PDL model was written to account for it. Table 2 shows the
results of evaluating the model with these four data files.

Task in Hardware Execution Time

DCT 0.234 s
Quantization 1.51s

ZigZag 1.54 s
RLE and Huffman Encoding 4.07 s

Table 2: PDL Results for Task Bindings

Results of table 2 show that the DCT (Discrete Cosine Transform) task was the best choice for
implementation on the coprocessor hardware. We did implement the DCT task in a coprocessor
system [3] connected to a Pentium based PC. Once complete, actual execution times for
compressing images of different sizes were measured. Accordingly, the PDL performance model
was evaluated with primitive attributes set for each of the different input images. Table 3 shows
the results of the PDL estimations compared with the coprocessor execution times.

13

142

File Size
(no. of pixels)

PDL Estimated Time
(seconds)

Actual Time
(seconds)

% Error

18,048 2.23 s 2.11 s 5.7
25,920 3.09 s 3.02 s 2.3
54,896 6.13 s 6.51s 5.8
69,840 7.43 s 8.11s 8.3
87,552 9.16 s 10.16 s 9.8

Table 3: Comparison of Estimated to Actual Execution Times

6 Conclusion

We have presented a performance modeling and analysis approach for co-designs using the PDL
system. In PDL, it is straight-forward to make several enhancements to the codesign model
presented in this paper so that it requires less primitive input information or considers more
performance parameters than just execution time. For example, the model could determine a
task schedule based on the hardware software bindings, more detail could be included as to
the target architecture, estimation could be incorporated for cost, hardware area, and so forth.
As the design evolves and requires more detailed performance analysis, so too can the PDL
model evolve and be refined to a more accurate representation of the system being modeled.

It is important to note that the PDL model is a generic model from which specific, executable
performance models can be generated (using the PDL compiler) given a specific task graph.
Thus, the PDL model applies to any task graph which follows the object construction scheme
specified in the PDL program. This is the essential difference between performance modeling
in PDL versus a procedural hardware description language such as VHDL. More information
on the PDL language and system, including the system software, can be obtained through the
PDL home page on the WWW at http://www.ece.uc.edu/" ddel/pdl.html.

References

[1] Ranga Vemuri, Ram Mandayam, Vijay Meduri. "Performance Modeling Using PDL". To
appear in IEEE Computer, 1995.

[2] Rajesh Kumar Gupta. "Co-Synthesis of Hardware and Software for Embedded Digiti Sys-
tems". Kluwer Academic Press, 1995.

[3] Stanford University. "Protozone: User's Guide".

[4] Ramanand Mandayam, Jeffrey Walrath, Ranga Vemuri. "Performance Description Lan-
guage Reference Manual". University of Cincinnati, 1995.

[5] William B. Pennebaker and Joan L. Mitchell. uJPEG:Still Image data Compression Stan-
dard". Van Nostrand Reinhold, 1993.

[6] Gregory K. Wallace. "The JPEG Still Picture Compression Standard". Communications
of the ACM, pages 30-44, April 1991.

14

143

[7\ Jay Roy, Nand Kumar, Rajiv Dutta and Ranga Vemuri. "DSS:A Distributed High-Level
Synthesis System". In IEEE Design and Test of Computers, June 1992.

15

144

APPENDIX.I:
Performance Verification Using Partial Evaluation and Interval Analysis

Jeffrey Walrath, Ranga Vemuri, and William Bradley
University of Cincinnati
P.O. Box 210030
ECECS Department, ML. 30
Cincinnati, Ohio 45221-0030

Address for Correspondence:

Dr. Ranga Vemuri, Director
Laboratory for Digital Design Environments
P.O. Box 210030
Department of Electrical and Computer Engineering
University of Cincinnati ML. 30
Cincinnati, Ohio 45221-0030

Phone: (513)-556-4784
Fax: (513)-556-7326
Email: ranga.vemuri@uc.edu

Submitted to: ED&TC97 i^i^^J\
Category: 9: Formal Verification

All appropriate clearances for the publication of this paper have been obtained, and if accepted
the author will prepare the final manuscript in time for inclusion in the Conference Proceedings
and will present the paper at the Conference.

Author
'Jeffrey Walrath

This work was partially supported by the ARPA RASSP program and monitored by the Wright Lab,
US-AF under contract number F33615-93-C-1316 and by the Semiconductor Research Corporation under
contract number DJ-293.

145

Performance Verification Using Partial Evaluation and Interval Analysis

Abstract

Performance models, usually written in high-level programming languages or high-level hardware
description languages, make full use of high level procedural constructs such as the assignment
statement, if-then, case, while control constructs and procedure calls. We propose a partial
evaluation procedure to reduce procedural performance models into an equational form. We
then propose an interval-analysis based method to formally determine whether the reduced per-
formance model satisfies a set of relational constraints on the performance attributes. Together,
the partial evaluation and interval analysis procedures constitute a powerful approach for formal
performance verification. We illustrate this through examples, and describe both techniques in
detail. Also included are results for an implementation of a symbolic partial evaluator of per-
formance models and a performance verification tool based on the interval analysis technique.

146

1 Introduction
System designs consist of a hierarchical collection of modules with ports connected by nets.
Performance of a system is described by a collection of attributes attached to the various objects
(modules, ports and nets) in the design. A performance model is an executable specification
where some of these attributes are specified in terms of the other (computed) attributes. Usually,
performance models are written in a hardware description language or a high-level programming
language using the full power of the procedural programming constructs, such as the assignment
statement, conditional and iterative statements and function calls, provided in these languages.
In this paper, we refer to these models as procedural performance models.

For example, Figure 1 shows a combinational logic design and Figure 2 shows a procedural perfor-
mance model for computing CMOS dynamic power dissipation based on input signal probabilities
[1]. It shows the primitive and the computed performance attributes. Attributes are attached to
each entity in the design and are referenced using the notation ObjectName'AttributeName. In
this example, all attributes are assumed to be real valued. This example is a procedural model
due to the presence of function calls which in turn contain variable assignment statements inside
while loops.

_ckL
_ . n5 ; -x n7

n2f-4iL..) i L^'T"
nl

„3L
)S2 h js4 .■—•—

n4" —- ' n6

Figure 1: Example Design Net List

The performance verification problem is to determine whether a performance model can simulta-
neously satisfy a set of relational constraints placed on the performance attributes. It is known
that the performance verification problem is undecidable for procedural performance models
[2, 3]. In this paper, we show how eqauational performance models can be verified using an
interval based analysis technique. An equational performance model consists of equations, one
for each computed attribute, in terms of other attributes using a predefined set of mathematical
operators. An equational model does not contain any programming constructs such as function
calls, conditional and iterative statements, and so forth. Furthermore, as will be discussed in
Section 3, mathematical operators in the equations must be invertible in the sense that for each
operation an inverse operation must exist.

Although operators used in basic expressions in procedural performance models are usually in-
vertible, there are many constructs that are not invertible. For example, variable assignment
is non-invertible. Control constructs such as case and while statements and function calls are
also non-invertible in the presence of the assignment statement. In some special cases a proce-
dural performance model fragment may be invertible, but that it is invertible is quite hard to
determine, requiring detailed mathematical analysis.

The question is how to transform a procedural performance model to an equational model
when sufficient, primitive attribute data is available. This paper also addresses this question
and develops a partial evaluation [4, 5] technique to reduce procedural performance models
to the equational form. Once reduced, these models can be subjected to formal performance
verification using the interval analysis technique. Figure 3 shows the process of performance

1

147

Primitive Attributes
ckt'systemJreq ckt'voltage
gl'capacitance nl'prob
g2'capacitance n2'prob
g3'capacitance n3'prob
g4'capacitance n4'prob

Computed Attributes
n5'prob = calcaiid_prob[(nl'prob, n2'prob])
n6'prob = calc.or-prob([n3'prob, n4'prob])
n7'prob = calc-and_prob([n5'prob, n6'prob])
118'prob = calc_or_prob([n6'prob, n7'prob])
gl'freq = min([n5'prob, 1.0 - n5'prob]) * ckt'systemJreq * 2.0
gl'power = (ckt'voltage**2 * gl'capacitance * gl'freq) / 2.0
g2'freq = min([n6'prob, 1.0 - n6'prob]) * ckt'systemJreq * 2.0
g2'power = (ckt'voltage**2 * g2'capacitance * g2'freq) / 2.0
g3'freq = min([n7'prob, 1.0 - n7'prob]) * ckt'systemJreq * 2.0
g3'power = (ckt'voltage**2 * g3'capacitance * g3'freq) / 2.0
g4'freq = min([n8'prob, 1.0 - n8'prob]) * ckt'systemJreq * 2.0
g4'power = (ckt'voltage**2 * g4'capacitance * g4'freq) / 2.0
ckt'power = gl'power + g2'power + g3'power + g4'power

function min(vals[])
begin

temp := vals[l]
foreach v in vals

{ if (temp > v) then
temp := v }

return temp
end

function calc_and_prob(vals[])
begin

temp := 0
foreach prob in vals

{ temp := temp * prob }
return temp

end

function calc.or.prob(vals [])
begin

temp := 0
foreach prob in vals

{ temp := temp * (1.0 - prob) }
return 1.0 - temp

end

Figure 2: Procedural Performance Model for Dynamic Power

Procedural
Performance

Model

Partial Primitive

Attribute Data

Relational Constraints

On Attributes

Partial
Evaluator

Equational
"Performance

Model

Performance
Verifier

-i=- Results

Figure 3: Performance Evaluation and Verification

Computed Attributes
n5'prob = 0.25
n6'prob = 0.75
n7'prob = 0.1875
n8'prob = 0.796875
gl'freq = 0.5 * ckt'systemJreq
gl'power = (ckt'voltage**2 * gl'capacitance * gl'freq) / 2.0
g2'freq = 0.5 * ckt'system-freq
g2'power = (ckt'voltage**2 * g2'capacitance * g2'freq) / 2.0
g3'freq = 0.375 * ckt'systemJreq
g3'power = (ckt'voltage**2 * g3'capacitance * g3'freq) / 2.0
g4'freq = 0.40625 * ckt'systemJreq
g4'power = (ckt'voltage**2 * g4'capacitance * g4'freq) / 2.0
ckt'power = gl'power + g2'power + g3'power + g4'power

Figure 4: Equational Performance Model for Dynamic Power

148

verification using partial evaluation followed "by interval analysis.

For example, Figure 4 shows an equational model which is obtained by reducing the procedural
model shown in Figure 2 after setting the all input signal probabilities to 0.5 (high and low
signal values are equally likely) and partially evaluating the model. This equational model can
now be subjected to formal performance verification based on the interval analysis technique.

For example, the question as to whether 10.0 < gl'capacitance < 25.0, 5.0 < g2'capacitance <
10.0, 5.0 < gZ'capacitance < 20.0, 8.0 < g4'capacitance < 15.0, 1.0 < ckt'voltage < 5.0,
10.0 < ckt'system.freq < 30.0 implies 0.0 < mc'power < 12000 can be answered affirmatively,
and the question as to whether 10.0 < gl'capacitance < 25.0, 5.0 < g2'capacitance < 10.0,
5.0 < gZ'capacitance < 20.0, 8.0 < g4'capacitance < 15.0, 3.3 < ckt'voltage < 3.5, 30.0 <
ckt'system.freq < 50.0 implies 0.0 < mc'power < 2000 can be answered negatively once the
model is reduced to the equational form. Of course, the verification is valid only within the
partial data with which the model was partially evaluated. This approach is analogous to the
use of symbolic simulation followed by boolean tautology checking for verifying logic circuits [6].

The rest of this paper is organized as follows: Section 2 introduces a notation for writing proce-
dural performance models and also describes a procedure for the partial evaluation of procedural
performance models given partial primitive attribute data. Performance models written using
this notation can be easily embedded into high level programming or hardware description lan-
guages. Additionally, when sufficient primitive data is available, the reduced models can be
rendered in the equational form. Section 3 describes our performance verification technique,
based on interval mathematics, for equational models. Section 4 presents experimental results
that show typical partial evaluation and verification times for some performance models. Section
5 contains concluding remarks.

2 Partial Evaluation of Procedural Performance Models
Conceptually, a performance model is specified by augmenting a (possibly hierarchical) net-list
with attributes and attribute evaluation rules [7, 8]. An attribute represents some design pa-
rameter such as voltage, power consumption, time delay, and so forth. An attribute can be
either primitive or computed. Primitive attributes are assigned a value by the user, whereas
computed attributes are defined by an evaluation rule which assigns an expression to the at-
tribute. Evaluation rules can use many different forms of expressions which will be described in
the following paragraphs. For uniformity of presentation, we will assume that all attributes are
real valued, although the partial evaluation and verification techniques presented in this paper
are fully capable of handling integers and enumerated types including booleans and bits.

Figure 5 shows an algorithm for partially evaluating a performance model. Aset is a set contain-
ing all of the attributes in the model. Prior to partial evaluation, the evaluation order of all the
attributes has to be determined. A computed attribute has an expression which defines how to
calculate the value of the attribute. This expression typically depends upon the value of other
attributes in the performance model. For example, if two rules were x = y + 5 and y = 5, the
rule for x could not be evaluated until y has been. An attribute which depends upon no other
attribute is given an evaluation order of 1. From there, each attribute expression is assigned an
evaluation order equal to one plus the largest evaluation order of any attribute upon which it
depends. In the previous example, y would have an order of one and x would have an order of
two.

149

' EVALUATE-MODEL(Aet)
begin

Determine-Evaluation-Order(Aset)
Tstep 4- 1
while (Tstep is less than or equal to the largest evaluation order)

Oset «- {All attributes in Aset with order equal to Tstep}
for each A in öset

£ <- Evaluation-Expression(A)
£ ■*- PartialEval(£)

end for
'step *~ 'step ' 1

end while
end

Figure 5: Partial Evaluation Algorithm

Using the evaluation order, each attribute in the model is evaluated beginning with all attributes
of order 1. The function PartialEval{) then performs the process where all known attributes
values are replaced in each evaluation rule, and evaluation rules are reduced as much as possible.
An attribute is considered known if it has a single real value. An attribute with an evaluation
rule is considered unknown until the evaluation rule can be evaluated to a single value.

The following sections describe in detail how to partially evaluate the various constructs. The
constructs discussed in this section are available in virtually all high level procedural program-
ming languages and hardware description languages. Performance models can be directly written
using such languages, or alternatively, such performance models can be automatically extracted,
given the design net-list, from generic performance models written in a performance modeling
language such as PDL [7]. Instead of selecting an existing language, we use this general notation
to emphasize that the partial evaluation technique described in this paper can be used in the
context of performance models written in many existing languages.

Mathematical Expressions : Every mathematical expression is parsed into an expression
tree with nodes in the tree representing operations, real values, or references to other attributes.
The evaluation process recursively traverses the tree replacing nodes with real values whenever
possible.

attr = unary-operator (Vi = PartialEval(expr)
attr = (Vi = PartialEval(left-expr)) binary-operator (V2 = PartialEval(right-expr))

If-Then-Else Expressions or statements : As shown below, each part of the if-then-else
expression is evaluated first. When the conditional expression is known, the entire if-then-else
expression or statement can be replaced by either the true or false branch, depending upon the
boolean value of the conditional statement. When the conditional does not evaluate to a known
value, the only operations are replacement of all known values where possible.

attr = if (Vi = PartialEval(conditional-expr)) then
(V2 = PartialEval(true-expr))

else
(V3 = PartialEval(false-expr))

endif

150

Case Expressions or statements : This is very similar to the the if-then-else expression
or statement. All expressions within the case expression are evaluated. When both the switch
expression and matching expression are known, the entire case statement can be replaced with
the corresponding arm expression or statement. When this condition does not occur, only values
for those attributes which are known can be replaced.

attr = case (Vi = PartialEval(switch-expr)) of
(Vj = PartialEval(match-expr)) : (V3 = PartialEval(arm-expr))
(V4 = PartialEval(match-expr)) : (V5 = PartialEval(arm-exprJ)
(V6 = PartialEval(match-expr)) : (V7 = PartialEval(arm-expr))

others : (Vx = PartialEval(other-expr))
end case

Foreach Expressions or statements : There are two different types of foreach expressions or
statements. One type of foreach contains a loop variable that iterates over a range of values from
one value to another value by a specified step size. When the left and right range expressions
are known, the foreach expression or statement can be unrolled and replaced by copies of the
foreach body with the loop variable replaced in each copy with the respective value. When
either element of the range is unknown, only references to known attributes in the foreach body
can replaced.

attr = foreach var in (Vj = PartialEval(left-expr)) to
(V2 = PartialEval(right-expr)) by (V3 = PartialEval(step-size))

{ (Vt = PartialEval(body-expr)) }

The other type of foreach expression iterates over a list of variables, values, or combination of
both. Partial evaluation here is similar to the other foreach expression or statement.

attr = foreach var in iterate-list
{ (Vi = PartialEval(body-expr)) }

Begin-End Sections : The process for evaluating the begin-end expression begins by setting
a temporary fail flag to false. Each variable declaration statement is evaluated along with the
initial value if there is one. If any of the variable declaration statements evaluate to unknown,
the fail flag is set to true.

Then each programming statement in the begin-end expression is evaluated. If during the
evaluation of a statement, the result is unknown, the fail flag is set to true. When a return
statement is reached, several conditions are checked. First, the return expression is evaluated.
If that value is known and the fail flag is still false, then the entire begin-end expression can
be replaced by the residual return expression. However, if the fail flag is true, that means a
previous statement did not completely evaluate so the begin-end expression can not be replaced.

Function Calls : Function calls are the most complicated expression to evaluate. First, a
copy of the function body (which is a begin-end expression) is made. Then variable declarations
are added to the top of the copied function body. For each argument in the function argument
list, a declaration is made for that variable and the initial value is set to the value being passed
to the function. The following example illustrates this process:

attr = min-val(objl'val, obj2'val) attr = begin
function min.val(a, b) a := objl'val

151

begin b := obj2'val

end end

Once the function call is replaced, the begin-end expression is evaluated. The function call be-
comes equational only if the residual return expression of the begin-end expression is equational.

By specifying the appropriate partial primitive data for the performance model, all expressions
and statements in the performance model can be reduced to an equational form during evalu-
ation. In the case where all primitive data is supplied, the entire performance model becomes
evaluated with every attribute having a single real value. This is full evaluation of the model
and does not require verification.

3 Verification of Performance Models
Performance verification is the problem of determining whether a performance model can simul-
taneously satisfy a set of relational constraints on the attributes. Interval mathematics [9,10,11]
provides a convenient technique to represent relational constraints as intervals. The constraints
are specified, the interval technique is applied, and a verification result is produced. This result
is in the form of a statement that the constraints can be met ("yes"), or they cannot be met
("no").

However, our approach is limited to performance models that contain only equations. That is,
every evaluation rule is only composed of the mathematical operators such as +, -, *, /, xy,
negation, exp(), and log().

Interval Notation: An interval is a tuple of the form [a, b] where a < b. It denotes the set
of all values from a to b, both inclusive. A relational constraint on an attribute is represented
by an interval. Figure 6 shows the interval notation for each type of relation that is possible
on attribute X. A set of constraints can be imposed on a single attribute with the union of
corresponding intervals. For example, the constraint X < 4 or X > 6 would be written as
[-oo,4) U [6,oo].

With given a performance model, relational constraints can be placed on various attributes in the
performance model. Relational constraints on primitive attributes state the assumptions about
the permitted variance in the operating condition of the performance model and the relational
constraints on the computed attributes state the desired performance goals.

Initially, each attribute is assigned an initial interval. A computed attribute with an equation or
a primitive attribute with no user-specified relational constraints has initial interval of [-00,00].

[c,c] X = c
f-oo,c] X < c
[coo] X > c
[a,b] a < X < b
(a,b] a < X < b
[a,b) a < X < b
(a,b) a<X<b
[-oo,c) U (c,oo] X £ c

Figure 6: Equivalent Relation and Interval

152

a/b+c*d+5

{+1

i' X ,/T^ \, •v
(a) {bj (*) (5 |

' (d) \
i. c _

Figure 7: Example Expression Parse Tree

Attributes that have a constant real value val are assigned an initial interval of [val,val]. Any-
constant value appearing in an equation also has an initial interval of [val,val]. A user specified
constraint placed on an attribute replaces the initial interval for the attribute.

Algorithm for Interval Analysis: To make the explanation of the algorithm clearer, we
assume that the attributes have only a single, real-valued interval constraint. A companion paper
[12] describes how a variation of this technique can be used to incorporate multiple intervals
(multiple relational constraints) for each attribute and integer intervals (including handling of
enumerated range intervals).

Before the analysis begins, each equation is parsed into an expression tree (parse tree). Internal
nodes in the tree are mathematical operators with edges pointed to to either one or two child
nodes depending on whether the operator is unary or binary. The leaves of the tree are either
attribute names or constant values. Figure 7 is an expression tree for the equation x = a/b +
c*d + 5. An expression parse tree for the entire performance model is generated in this fashion.
The entire performance model is represented as a forest of expression trees.

The interval analysis algorithm makes repeated use of two basic steps, a forward interval analysis
step followed by a backward interval analysis step. In the forward direction, beginning with rules
having an evaluation order of 1, each equation is evaluated using interval mathematics. Interval
mathematics define how each operator behaves when calculating with intervals. Figure 8 shows
each mathematical operator and how to determine a resulting interval.

addition : [a,b] + [c,d] = [a+c, b+d]
subtraction : [a,b] - [c,d] = [a-d, b-c]
multiplication : [a,b] - [c,d] = [min(a*c, b*c, a*d, b*d), max(a*c, b*c, a*d, b*d)]
division : [a,b] / [c,d] = {[a,b] / [c, 0)} U {[a,b] / (0, d]} when [c,d] contains
division : [a,b] / [c,d] = [a,b] * [1/d, 1/c] when [c,d] does not contain zero
minus : - [a,b] = [-b, -a]
exp() : exp([a,b]) = [exp(a), exp(b)]
log() = log([a,b]) = [log(a), log(b)] when a> 0
log() : log(ia>bJ) = UNDEFINED when b < 0
XY : [a,b]^c,d] = exp([c,d] * log([a,b])) when X>0
union : [a,b] U [c,d] = [min(a,c), max(b,d)]
intersection : [a,b] n [c,d] = [max(a,c), min(b,d)j

Figure 8: Mathematical Operators on Intervals

153

[2,5]+ [14,18] = [16,23]
,-[-100,100] 0 [I6,23]fl[-100,100] = [16,23]

(JL) .+)[-100,100] U) A,. [7,11]+ [7,7] = [14,18]
[2,5]"" >-< [2,5]' if > [14,18]fi[-100,100] = [14,18]

; b) if) (b) ■ .7)
[7,11]' [7,7] [7,1 lT [7,7]

Before Forward Analysis After Forward Analysis

Figure 9: Forward Interval Analysis Example

[5,11]

Q15,111 [5,11]-[-5,12] = [-7,16] /$\ [5.11]-[-10.10] = [-5.21]
,y ~\ r , ,91 [-10.10int-7.16] = [-7.10]- W V f-5'21^f-5'12! = ^12]
(a) C+^[-5,12] ■-■■ r^;+/v.

[-10,10] r\ vAv
rfS >7'> [-5,12] - [7.7] = [-12,5] '5 W fe W2] " H">,40] = MM*

[-40,40] [7,7] [-12,5]0[-40,40] = [-12,5] [-45,32]/1[7,7] - [7,7]

Before Backward Analysis After Backward Analysis

Figure 10: Backward Interval Analysis Example

Forward interval analysis of an equation begins by traversing the expression tree from the leaves
to the root. The intervals at the leaf nodes are passed to their parent nodes. In the parent
node, the appropriate operator is performed and a new interval is created. This new interval is
intersected with the current interval at that node to produce the final result. This process is
repeated until the interval at the root of the tree is revised. Figure 9 is a simple example that
illustrates forward interval analysis on an expression parse tree. Forward (upward) propagation
of intervals constitutes computing the parent intervals from the child intervals.

Each equation with an evaluation order of 1 is evaluated in this manner. Next, the equations
with evaluation order 2 are analyzed, and this process continues until all equations have been
forward analyzed. If at any time an empty or an illegal interval is generated, all analysis stops.
An illegal interval is an interval [a,b] where b < a. This "interval" has no values in it and is
considered empty. Once an interval becomes empty, no further propagation can occur because
intersection with an empty interval always produce an empty interval.

The occurrence of an empty interval means that with the given performance model can not
simultaneously satisfy all constraints. Thus, analysis stops and the result of verification is that
the constraints cannot be met; that is the system of constraints can not be satisfied by the
model. There is no possible assignment of values to the primitive attributes within the specified
ranges that would meet the overall performance goals as stated.

However, after all equations have been forwarded analyzed and no empty intervals were gener-
ated, the next step is to do backward interval analysis. In backward analysis, the expression

X = A + B
X = A-B
X = A*B
X = AB
X = -A
X = log(A)
X = exp(A)
X = AB

154

A = X-B and B = X-A
A = X+B and B = A-X
A = XIB and B = X/A
A = X*B and B = A/X
A=-X
A = exp(X)
A = log(X)
A = exp(log(X)/B) and B = log(X)/log(A)

Figure 11: Inverse Calculations

parse trees are used again. However, evaluation starts at the root and propagates intervals down
the tree instead of up the tree as in forward analysis. For each node, a new interval value is
calculated using the current interval values of the parent node and the sibling node. This new
interval that is calculated is intersected with the current interval value at that node to obtain a
new interval value for that node.

To calculate a new interval for a node, the inverse of the operator at its parent node must
be considered. For example, suppose there is an addition node with an interval X and two
children with intervals A and B. In the forward propagation direction the expression would
be X = A + B. However, in backward propagation, a new interval is calculated for A using
A = X — B and a new interval for B is calculated as B = X — A. Each node has the computed
interval intersected with its current interval, and the algorithm traverses the expression tree
until leaf nodes are reached. Figure 10 shows an example of backward analysis for the same
expression tree in Figure 9.

Every mathematical operator in the expression trees must have an inverse operator for backward
analysis to work correctly. (This, in fact, necessitates the restriction that this technique is
applicable to invertible equational performance models only.) Figure 11 shows the inverses for
each operator where X is the interval of the current node, A is the interval of the left child and
B is the interval for the right child.

Backward analysis continues as long as an empty interval is not produced and until all equations
have been backward analyzed. When an empty interval is produced, all analysis stops and the
result is that the performance model is unsatisfiable with the given set of constraints. Otherwise,
forward and backward propagation are repeated until no further interval changes occur. If this
happens, the constraints are satisfiable (ie. there exists a set of values which when applied to
the model will produce a solution in the desired range).

Figure 12 is the algorithm for the entire verification process with forward and backward analysis.
Nset is the set of all nodes in the expression trees for all expressions in the performance model.
Note that the algorithm will always produce a result of either satisfied or unsatisfied. In the
case that that an empty interval is generated during iteration, the algorithm ceases and returns
a status of unsatisfied. When this does not happen, the outer while loop continues to iterate
until no node interval changes during a forward and backward iteration. In theory, it is possible
that this may never happen. However, due to the computer's finite precision, there will always
be an iteration where no change occurs. In practice, this limit on the precision is small enough
that it does not affect the results in a practical performance modeling situation.

155

VERIFY -MODEL (Ket)
begin

Determine -Evaluation-Order {Nset)
Done <- false
while(jDone is false)

Done«- true
Tstep *- 1 / * Forward Propogation* /
while(7^tep is less than or equal to the largest evaluation order)

Oset«- {All nodes in Nset with order equal to Tstep}
for each ßf in öset

X <r- GetJnterval(N)
Ztemp <- Per form JntervaljOperation(Af)
■i-new ^"" X 11 -Ltemp

if (Inew is empty) then
return Unsatisfied

end if
if (I not equal to Xneu,) then

Replace Jnterval{N', Xnew)
Done «— false

end if
end for
Tstep *~ Tstep + 1

end while
Tstep <- largest evaluation order / * Backward Propogation* /
while(7^ep >0)

Oset «- {All attributes in Afset with order equal to Tstep)
for each M in Oset

X «- GetJnterval(N)
Xh f- GetJLeft.ChildJnterval{N)
XR «- Get-Right-Child Jnterval{N)
ZtempR <- Per form JnverseJnterval.Operation(l,Xt)
ZtempL <~ Per form JnverseJntervaLOperation(X,lR)
XnewR <!—XC\ XtempR

. -LnewL 4- X n -LtempL
\f{lnewL or XnewR is empty) then

return Unsatisfied
end if
if (2L not equal to 2„eioi,) then

Replace-LeftJnterval(N', XnewL)
Done «— false

end if
if (1R not equal to Inemfl) then

Replace-Right Jnterval (Af, XnewR)
Done <- /aZse

end if
end for
tstep * I step ■*■

end while
end while
return Statisfied

end

Figure 12: Verification Algorithm

10

156

Constraints
gl'capacitance : [10.0, 25.0] g4'capacitance : [8.0, 15.0] ckt'systemJreq : [10.0,30.0]
g2'capacitance : [5.0, 10.0] ckt'power : [0.0,12000.0]
g3'capacitance : [5.0, 20.0] ckt'voltage : [1.0,5.0]

Results Constraints were satisfiable
ckt'power : [63.125,11660.2] gl'power : [25,4687.5] g3'power : [9.375,2812.5]

g2'power : [12.5,1875] g4'power : [16.25,2285.16]

Figure 13: First Verification Configuration

Constraints
gl'capacitance : [10.0, 25.0] g4'capacitance : [8.0, 15.0] ckt'system_£req : [30.0,50.0]
g2'capacitance : [5.0, 10.0] ckt'power : [0.0,2000.0]
g3'capacitance : [5.0, 20.0] ckt'voltage : [3.3,3.5]

Results Constraints were not satisfiable
ckt'power : [] gl'power : [816.75,3828.13] g3'power : [306.281,2296.88]

g2'power : [408.375,1531.25] g4'power : [530.888,1866.21]

Figure 14: Second Verification Configuration

4 Implementation and Results
The partial evaluator and the interval-analysis based performance verification tool are imple-
mented in C++ on Sun Sparc platforms. In the first subsection below, we show the interval
constraints and results produced by verification of the reduced equational performance model
shown in Figure 4. Three different verification exercises for this model are presented to describe
how the verifier can be used. The second section shows evaluation and verification times for two
different performance models for large design net-lists.

4.1 Verification of the Performance Model for Power

A constraint configuration or simply configuration specifies the relational constraints to be placed
on the attributes of a performance model. Figure 13 is one configuration for the primitive at-
tributes in the performance model. Additionally, we constrain ckt'power to answer the question:
with the given primitive attribute constraints, can the power constraint be satisfied?

The equational model and configuration are given as input to the verifier and two results are
produced. First, the verifier specifies whether or not all the constraints were satisfied. In
addition, it also lists all the attributes and their last calculated interval values when analysis
finished. For the configuration in Figure 13, the constraints were satisfiable. Only the intervals
that were different from the original configuration are shown here. Notice that the interval for
ckt'power has changed from the interval originally specified.

Figure 14 is another configuration with slightly different constraints. In this case, the verifier
shows that the the constraints were not satisfiable. Again, only those intervals which are different
from the original specification are shown.

A final configuration for the performance model uses a union of intervals for several attributes.
Figure 15 shows the intervals separated by commas. A list of intervals separated by commas is
equivalent to the union of the those intervals. This configuration was shown to be satisfiable

11

157

Constraints
gl'capacitance : [10.0, 25.0] g4'capacitance : [8.0, 15.0], [3.0,3.5] ckt'system-freq : [80.0, 90.0],[30.0,50.0]
g2'capacitance : [5.0, 10.0] ckt'power : [0.0,2000.0]
g3'capacitance : [5.0, 20.0] ckt'voltage : [3.3,3.3], [3.0,3.0]

Results Constraints were satisfiable
gl'power : [675,2812.5] gl'capacitance : [10,25] ckt'power: [1704.37,2000]
g2'power : [337.5,1125] g2'capacitance : [5,10] ckt'voltage : [3,3]
g3'power : [253.125,1687.5] g3'capacitance : [5,20] ckt'systemJreq : [30,50]
g4'power : [438.75,1371.09] g4'capacitance : [8,15]

Figure 15: Third Verification Configuration

by the verifier. This time, those attributes which have a union of intervals are shown with the
interval that was used during evaluation to produce that satisfiable result.

4.2 Execution Times

We now present results of partial evaluation and verification times for larger performance models.
The first performance model was written to calculate the throughput time of combinatorial
circuits, given the delay times of each of the gates. A program was written that generated 12
different large combinatorial circuits containing from 1 to 12,286 net-list objects (an object being
a single module, port, or net). Using PDL, a performance model for calculating throughput rate
was generated for each of the 12 net-lists.

Next, each net-list was partially evaluated, after setting the data arrival time at input ports to
'0 ns', to produce an equational model. This model was then verified with a set of constraints
that is satisfiable. The same net-list was again verified with a set of constraints that is not
satisfiable.

Times for partial evaluation and verification were measured on a Sun SPARCstation 20 contain-
ing 256 megabytes of memory. Figure 16 is a plot of all the times for the 12 different net-lists.
With this model, it is clear that net-lists with fewer than 1000 objects took an insignificant
amount of time to evaluate and verify. However, as the net-list size increased, the verification
time increased significantly for the satisfiable constraint set. However, unsatisfiable constraints
were verified with a negative in a short amount of time, even for large net-lists.

As a second example, a model for calculating dynamic power in CMOS logic circuits was used for
14 different logic circuits. Net-lists ranged in size from 1 to 49,150 objects. Again, each net-list
was partially evaluated to produce an equational model, then verified with a set of satisfiable
constraints and a set of unsatisfiable constraints. Figure 17 shows the plot of the times for
the various net-lists. In this example, verification of the satisfiable constraints was faster than
evaluation and verification with unsatisfiable constraints.

5 Conclusion
This paper presented a partial evaluation technique to simplify procedural performance models
and render them in an equational form in which they can be subjected to formal verification using
interval analysis. This process is similar to the use of symbolic or trajectory evaluation followed
by boolean tautology checking for formal verification of logic circuits [13, 6]. Experimental

12

158

3000

2500

2000 -

£ 1500 -

1000

500

{ I 1 ! 1 ■ i

Evaluate -*—
Satisfiable -n—

\f Unsatisfiable •□•■

I \ / \

] / I

/ \

! \ .M \

\ Y''

— «r"B*T B 1
i i «

2000 4000 6000 8000 10000
number of objects

12000 14000 16000

Figure 16: Evaluation and Verification Times for Delay Model

14000

12000

10000 20000 30000 40000
number of objects

50000 60000

Figure 17: Evaluation and Verification Times for Power Model

13

159

results show that both the partial evaluation and interval analysis based verification techniques
are quite fast even for net-lists contain several thousands of design objects.

We are currently investigating techniques for more closely integrating partial evaluation and
interval propagation and for partially evaluating and verifying models that contain dynamic
performance attributes that assume streams of values.

References

[I] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. "Digital Systems Testing
and Testable Design". Computer Science Press, 1990.

[2] Michael R. Garey and David S. Johnson. "Computers and Intractability: Guide to the
Theory of NP-Completeness". W.H. Freeman, 1979.

[3] William Bradley. "Performance Verification of VLSI Systems". PhD Dissertation Proposal,

1995.

[4] Uwe Meyer. Correctness of online partial evaluation for pascal-like language. Technical
Report 9205, Justus-Liebig University, October 1992.

[5] Carsten K. Gomard Neil D. Jones and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, Englewood Cliffs, N.J., 1993.

[6] R.E. Bryant. "Can a Simulator Verify a Circuit?". In G. Milne and P.A. Subrahmayam,
editors, Formal Aspects of VLSI Design, pages 125-136, 1986.

[7] Ranga Vemuri, Ram Mandayam, Vijay Meduri. "Performance Modeling Using PDL". IEEE
Computer, pages 44-53, April 1996.

[8] Joel M. Schoen, editor. Performance and Fault Modeling with VHDl. Prentice Hall, Engle-
wood Cliffs, N.JV 1992.

[9] R.E. Moore. "Interval Analysis". Prentice Hall, Inc., 1966.

[10] William Older and Andre Vellino. Constraint arithmetic on real intervals. In Frederic Ben-
hamou and Alain Colmerauer, editors, Constraint Logic Programming: Selected Research.
MIT Press, Cambridge, MA, 1993.

[II] Götz Alefeld and Jürgen Herzberger. Introduction to Interval Computations. Academic
Press, New York, NY, 1983.

[12] William Bradley and Ranga Vemuri. "Performance Verification Using PDL and Con-
straint Satisfaction". In Proceedings of ASP-DAC'95, CHDL'95, VLSP95, pages 531-538.
CHDL95, 1995.

[13] Scott Hazelhurst and C.H. Seger. "A Simple Thereom Prover Based on Symbolic Trajectory
Evaluation and OBDD's". Technical Report TR 93-41, University of British Columbia,

1993.

14

160

APPENDIX J:
Hierarchical Behavioral Partitioning for Multicomponent Synthesis

Affiliation: EURO-DAC Categories: 2.1, 4.5 and 2.8

Abstract
Packaging technology has tremendously improved

over the last decade. Various packaging options such
as ASICs, MCMs, boards, etc. should be well explored
at early stages of the system-synthesis cycle. In this
paper we present a hierarchical behavioral partitioning
algorithm which partitions the input behavioral speci-
fication into a hierarchical structure and binds all ele-
ments of the structure to appropriate packages from
a given package library. As an application to our
partitioner, we integrated the partiiioner with a high
level synthesis tool to create an environment for mul-
ticomponent synthesis and hierarchical package design.
We provide detailed partitioning algorithms and exper-
imental results.

1 Introduction
High level synthesis converts a behavioral specifica-

tion of a digital system into an equivalent RTL design
(composed of a data path and a finite state controller;
the data path is a composition of components selected
from a register-level component library) that meets a
set of stated performance constraints [1, 2, 3]. This
RTL design can be partitioned into multiple segments
to realize a multichip design. Partitioning RTL de-
signs, however, has various drawbacks: (1) Control
lines could be crossing segment boundaries; (2) Op-
erators could be shared by operands in different seg-
ments, this results in poor performance due to inter-
chip communication; (3) The design is fixed during
synthesis and thus there is very little scope for cir-
cuit transformations to improve performance; (4) RTL
designs are much larger than their behavioral counter-
parts, thus,' the solution space increases rapidly with
the size of the synthesized behavior, making the par-
titioning process very time consuming; and (5) Power
estimation/measurement for RTL designs is too time
consuming and not viable for very large designs.

Recent efforts in system-level synthesis have led to
the development of high level synthesis systems that
can produce multichip digital systems [4, 5, 6]. These
systems, however, do not consider the impact of pack-
aging on high level synthesis and hence designs pro-
duced by these systems cannot efficiently use avail-
able high performance packaging technology. For very
large, performance critical designs, an efficient hier-

JZ * JL PlR-2 / ./"—>y

/ \ "i r \
/ 1 v / \ I " 1 \ I V
\ / Vi 1 i \ j
\ A-a / V /
l^~^\ 1 / \ ^-^ i \ Is / oy-< i ^C

I / \ i B\l n n --~ ~T~~ E» / _ \ i \ /c \ B K ^ V /I / \
\ Bi. J 1 ~^-- r*—s i / \

-- i * f T»*"^ / / •> \ / 1 \ ' ./*"-v x"^v ^v /
/ i i r \ / \ \N^^/

I ") >' (l_ 1 1 \
\ / / r~ \^y / \ X— -4 A-i En

\ J i
(i)Proe «A, parMorad

• MgrMnrj
Pvt-3

Bond Cation

Part-l |MM|

1C |PM-l|

|PW-l|
ucu

1— 1 fmu

IC
HOI

M A tfenreMcd Structure bound to MK**OM

Figure 1: Hierarchical Behavioral Partitioning

archical behavioral partitioner, which fully explores
various packaging options, is required to tackle the
drawbacks of RTL partitioning. The inputs to the Hi-
erarchical behavioral partitioner are: (1) a behavioral
specification to partition; (2) parameterized register
level component library characterized for area, delay,
and switching activity; (3) package library with area,
pins, switching activity, clock speed, and cost infor-
mation for all packages; and (4) cost constraint C, in
dollars on the entire design. The output of the parti-
tioner is: (1) a set of behavioral specifications, which
together form the original specification; (2) a set of
structures that realizes the hierarchical design; and
(3) a binding of the behavioral specifications and the
structures to appropriate cost effective packages from
the package library.

The input behavioral specification (which may be
given in VHDL) consists of a set of communicating and

161

concurrently executing processes. This specification is
internally represented as a process graph; with nodes
in this graph representing concurrently executing pro-
cesses, and edges being communication channels Fig-
ure 1 shows a process graph and its hierarchical par-
tition. All multiple-process segments in the figure
marked Part-i are behavioral specifications themselves
and can be synthesized into register level designs. All
these register level designs together with the global
controller form the multicomponent design. The hi-
erarchical design mapped onto packages shown in the
board design forms a package hierarchy for the de-
sign. We formulate the hierarchical partitioning prob-
lem and and propose a solution for the hierarchical
partitioning and package binding problem. We show
how our partitioner can be integrated with a high
level synthesis tool to create an environment for mul-
ticomponent synthesis and hierarchical package bind-
ing. Experimental results for a number of designs are
presented.

2 Problem Formulation
Definitions 2.1 and 2.2 introduce the concept of a

hierarchical k-level partition of a set. Definition 2.3
extends our notion of a k-level partition of a set to a
k-level partition of a graph G = (N, E) (which in our
case is a process graph), where JV is the set of nodes
and E is the set of edges.

Definition 2.1 A 1-level partition of a set X is a col-
.lection, S, of nonempty sets (called segments), such
that
• S is a collection of mutually disjoint sets, i.e.,

if C € S, D € S, and C # D, then C D D - <i>, and
• the union of S is the whole set H', i.e., (J,6<s s = .V.Ü

Definition 2.2 A k-level partition, V, of a set .'V is a
set of 1-level partitions Pi, P2,..., Pi such that
• for 1<£ < k, P,+i is a 1-level partition of Pi, and
• Pi is a 1-level partition of jV. Q

Definition 2.3 A k-level partition of a graph G =
(N, E) is a k-level partition of N, where N is the set
of nodes and E is the set of edges. Q

The performance attributes of the nodes in the
graph G and level 1 partition segments (each segment
is viewed as a sub-graph of G or a subset of processes
in the behavioral specification) in the graph are de-
termined through scheduling and performance estima-
tion of individual nodes or segments [12, 13, 15]. Thus
for any segment, s £ Pi, the performance attributes
A(s), H(s), T(s), and B(s) (area, switching activ-
ity, clock period and pin count respectively) are com-
puted by the performance estimator built into the par-
titioning environment. This process is similar to the

scheduling and performance estimation steps in high
level synthesis [12, 15].

We have a set of packages pi, pi, pz ■ ■ .pn in a pack-
age library C. Each package p has six attributes: A(p),
the area capacity; H(p), the maximum switching ac-
tivity; T(p), period of the fastest clock allowed by the
package; B(p), the number of pins available in p; C(p),
the dollar cost of p; and L(p) > 1 is the level number
of the package p. Level of a package is the level in the
packaging hierarchy at which the package can be used.
All bare-die packages are level one, ASICs and MCMs
are level two, boards are level three, and so on. The
defining level of a library is the smallest h such that
no package in the library has level greater than k. For
i > 1, packages with level i can contain only packages
with level:' — 1 and level 1 packages contain the nodes
and segments of the process graph. The hierarchical
partitioner assigns a package p £ C to each partition
segment in Pi, P>,.. .P* € V. All packages can be in-
stanced multiple times, that is, two different segments
can be assigned the same package type. AU segments
in Pi, called the level i segments, can be assigned only
to a package of level i. If p and q are two package
instances then, p < q denotes 'p contains q'.

Definition 2 A For any instance, p, of a package from
the package library C:

If 2 < L(p) < k:

(a) area cost of the package a(p) =)P a(q)
?<1

(b) heat cost of the package h(p) = £j h(q)
p<i

(c) pin cost of the package b(p) =

y e, e spans package instances pa and pj; such that:

<€£ (L(Pa) = L(Pb) = L(p) - 1) A (p -C Pa) A (p * pb)

(d) clock period cost i(p) = maxp<q(t(q))

When L(p) = 1, the scheduler and performance es-
timator will determine the above costs based on the
level 1 segment in p. E

Hierarchical Partitioning Problem: Given a
process graph, G = {N,E), a package library £ with
defining size k, and a cost constraint C:
• find a (k-l)-level partition V = {Pi,P2, ...,Pi_i}
ofG
• Let P-g = {si}; where, st = {s<.—i | Sfc-i € Pt-i}
that is, Pi contains exactly one segment (which in turn
contains all the segments in Pk-i) to be mapped to a
top most level package in the library.
• Now find a binding, B, which for 1 < : < k. binds
each segment in Pi to some level i package instance
from £, such that

162

for each instance, p, of anv package from C:

«00 < MP),
KP) < B(P),
*(P) < B(p),
t(S)>T(p).

subject to

Cost{V)= YL Ctä Cost(P)<C. a
instance p

3 The Behavior Level Hierarchical
Partitioning Algorithm

The algorithm begins by partitioning the process
graph and mapping partition segments onto available
bare-die packages. A graph is constructed from the
partition generated at this level for further partition-
ing at the next higher level of packaging. The pack-
aged partition segments form nodes in the new graph;
edges of the current graph which connect nodes in dif-
ferent segments, form the edges of the new graph. At
the next higher level of packaging, this new graph is
partitioned and mapped onto packages. This process
continues until the packaging hierarchy is exhausted
and at each level, partition segments are mapped onto
cost effective packages. If, at a particular level, no
solution is found, we back-track to the previous level,
tighten cost constraints, and construct a new parti-
tion and continue. Various steps in the algorithm are
explained below.

Setting Constraints: Initially, on the first pass,
overall area and switching activity constraints for the
entire design are set to the minimum area and switch-
ing activity capacity of packages at the highest level
in the package hierarchy (since, eventually, the design
hierarchy needs to be mapped onto a package at the
topmost level in the package hierarchy). The cost con-
straint is set by subtracting the cost of the smallest
package at all levels of packaging above level 1 from
the total cost constraint, C. On subsequent invoca-
tions, if the algorithm is back-tracking, a cost overrun
is computed. If the cost overrun is less than the cost of
the previous level's packaging, cost constraint for the
previous level (on a back-track) is set by subtracting
the product of cost overrun and a cost overran fac-
tor (COF < 1) from the cost of the previous level's
packaging. On the other hand, if the cost overrun is
greater than the cost of the previous level's packaging,
cost constraint for the previous level (on a back-track)
is set by multiplying the cost of the previous level's
packaging by a constraint tighten factor (CTF < 1).
COF and CTF dictate the rate at which the cost con-
straint is tightened on a back-track. Typical values of
COF are between 0.2-0.3 and CTF between 0.9-0.95
to enable effective search of the design space. If the
algorithm is not back-tracking, cost constraint is gen-

erated by subtracting the actual cost of packaging at
lower levels of packaging and the projected packaging
cost at higher levels (cost of smallest packages) from
the total cost constraint, C.

Hierarchical Partitioning and Package De-
sign (HPP): Algorithm 3.1 presents the hierarchi-
cal partitioning and package design algorithm (HPP).
HPP has access to a multiway partitioning algorithm
(MP - Algorithm 3.2). When partitioning at any level,
HPP first determines cost, area, and switching activity
constraints using Set.Constraint and then MP is in-
voked. MP explores the design space by constructing
a set of alternative partitions; MP returns the first par-
tition that satisfies constraints, or, in the absence of
a constraint satisfying solution, returns the best cost
solution from the set of partitions.

MP returns a status flag along with a solution (par-
tition with segments bound to packages). Status takes
three values of SUCC, BEST, or FAIL to describe the
cases where a constraint satisfying solution is found (a
constraint satisfying partition with partition segments
mapped onto packages from the package library), a
solution is found (valid partition - a partition with
segments mapped onto packages, but does not satisfy
constraints), or no solution is found (no valid partition
- one or more partition segments cannot be mapped
onto packages). Based on the values of the status flag
for the current and previous levels, HPP decides to
proceed to the next higher level, back-track to previ-
ous level or terminate reporting failure. A hierarchi-
cal netlist manager (HN) is used to generate a netlist,
of the newly generated partition, for use at the next
higher level.

Multiway Partitioning Algorithm (MP): MP
(Algorithm 3.2) is built on top of a K-way extension
of the Fiduccia-Mattheyses algorithm (KWAY - Algo-
rithm 3.3) [11, 14]. MP first determines the minimum
and maximum number of segments that feasible par-
titions can have and invokes the KWAY algorithm to
generate partitions in the feasible range. MP returns
with status SUCC if a constraint satisfying partition
is found. When a constraint satisfying solution is not
found, MP returns the best solution found with status
BEST. In the case of no valid partitions (one or more
partition segments cannot be packaged), MP returns
FAIL.

K:way FM Algorithm.(KWAY): Our k-way ex-
tension of the FM algorithm (KWAY — Algorithm 3.3)
starts by creating a random initial partition of k
segments, k-way partitioning is carried out by re-
peatedly invoking two-way FM (two.way.fm) on pairs
of partition segments. two.way.fm tries to im-
prove bi-partitions by moving one node at a time

163

Algorithm 3.1 (HPP Algorithm: HierPartPack)
G: input graph (Behavioral specification)
P: package set
C: overall cost constraint on design
HN: hierarchical netlist manager
StatArr[k], BtkArrfkJ: status of partitioning and num-
ber of back-tracks at each level
MaxBtk: User specified limit on number of back-tracks
at any level
k: levels in package hierarchy, level: current level
area: overall area constraint
switch: overall switching activity constraint
cost: cost constraint at current package level

HierPartPack(G, P, C)
begin

level<- 1 Guvti +- G Solution — null
while level < k do

Set.Constraini()
(status, Solution) — MP(Gltvel, P(level), cost,

area, switch, level)
StatArrfk] — status
case status is

SUCC:
level *— level + 1
HN :: read.partition(Solution)
HN:: construcLnetlist(level)

BEST:
if ((SiatArrflevel - 1]= SUCC) A

(BtkArrfkJ < MaxBtk)) then
BtkArrfkJ <- BtkArrfkJ + /
level — level - 1 /* back-track */

else
level — level + 1
HN :: read.partition(Soiuiion)
HN :: construct.netlist(level)

end if
FAIL:

if ((StaiArrflevel - 1] = SUCC) A
(BtkArrfkJ < MaxBtk)) then

BtkArrfkJ <- BtkArrfkJ + 1
level — level - 1 /* back-track */

else
return (null)

end if
end case
Gttvei <— HN :: read.netlist(level)
/* retrieve next level netlist */

end while
TetuxnfSolution)

end

Algorithm 3.2 (Multiway Partitioning Algorithm)
G: input graph, P: package set
p: individual package from P
area: overall area constraint
switch: overall switching activity constraint
C: cost constraint on design
level: level in package hierarchy

MP(G, P, C, area, switch, level)
begin

min.seg — mas(area/max.area(p),
switch/max_switdi(p))

max.seg *— num.cell(G) /* # of nodes in graph */
best.cost <— co status — FAIL
Solution <— null
for num.seg = minseg to maxseg do

Best - KWAY(G, P, numscg, level)
/* generate first partition */
num.fmJ.te *— 1 num.fmJmp <— 1
status <— check.constraint(Best, area, switch, C)
while (status £ SUCC A

num.fm.ite < MAXJTMJTE A
num.fm.imp < MAXJTMJMP) do

5 — KWAY(G, P, nunuseg, level)
status *— check.constraint(S)
num.fm.ite <— num.fm.ite ■+• 1
best.costJnoay «— cost(Best)
if (status = SUCC) V ((status = BEST) A

(cost(S) < besLcostJrway)) then
Best — S

end if
if (cost(S) < best.cost.kway) then

num.fmJmp — 1
else

num.fm.imp — num.fm.imp + 1
end if

end while
if status = SUCC then

return (status, Best)
elsif (status = BEST) A (cost(3est) <

best-cost) then
Solution — Best
best.cost — cost(Best)

end if
end for
return^aius. Solution)

end

164

Algorithm 3.3 (k-way FM Algorithm: KWAY)
G: graph G = (V,E), V is a sei of vertices and E is a
set of edges
P: set of packages, S: {si, s2l • • •, sn } a partition of G
with k segments

KWAY(G, P, k, level)
begin

Best *— initializef) /* create initial partitions */
if level = 1 then /* pure behavior specification

- estimate attributes */
for all 5 € Best do

Schedule/Performance Estimate s
and generate A(s), S(s), B(s), and T(s)

end for
end if
best-cost *- 0 S <— null cont-part <- TRUE
iie-cnt <— 1 imp.cnt ♦— 1
for all s € Best do /* map partition segment

to package and find cost */
best-cost *— best-cost + cost(B(s))

end for
while cont-part = TRUE do

for i= 1 to k—1 do
for j — i+1 to k do

twojway-fm(si, Sj)
end for

end for
if level = 1 then /* pure behavior specification

• estimate attributes */
for all s 6 S do

Schedule/Performance Estimate s
and generate A(s), E(s), B(s), and T(s)

end for
end if
curr.cost — 0
for all s € 5 do /* map partition segment

to package and find cost */
curr.cost — curr.cost + cost(B(s))

end for
ite-cnt «— ite-cnt + 1
if curr.cost < best-cost then

imp.cnt «— 1 Best — 5
/* save best partition seen so far */

else imp.cnt *— imp.cnt + 1 end if
if ite.cnt = MAXJTE V imp.en* = IMP.CNT

then cont.part <— FALSE end if
end while
return,''5es<^ /* reinere iesi partition */

end

from one partition segment to the other, taking
care not to violate area and switching activity con-
straints. The two.way.fm algorithm is based on Fiduc-
cia and Mattheyses's bi-partitioning algorithm [11].
two.way.fm is invoked until, either a user specified
limit on number of total iterations is exceeded, or a
user specified limit on number of iterations over which
partition cost does not improve is exceeded. The best
cost solution found during the iterations is returned
as the k-way partition.

Scheduling and Performance Estimation: To
evaluate the cost of level 1 partition segments, the PC-
way FM invokes the scheduler, which also estimates
the performance attributes. Scheduling is the first
important step in the high level synthesis process.
The input behavioral specification is converted into
an equivalent data flow graph (DFG) representation.
Scheduling operates on the DFG. DFG operations are
assigned to specific control steps and are bound to
physical ALUs available in the component library. The
output of scheduling is a time-stamped and partially
bound data flow graph, that satisfies specified con-
straints. Scheduling determines execution speed of the
synthesized design in terms of clock speed and number
of clock cycles required to execute all operations. For a
given parameterized component library, we can com-
pute the area, average switching activity, and clock
speed costs from the schedule produced by the sched-
uler. An implementation of Paulin 's force-directed list
scheduling [9], extended for communicating and con-
currently executing processes [8], is used. Switching
activity estimation technique has been reported in [7].

4 Multicomponent Synthesis
Multicomponent synthesis is carried out by synthe-

sizing individual partition segments at level 1. Fig-
ure 2 demonstrates how we integrate our hierarchi-
cal partitioning environment with a high level synthe-
sis system to produce multicomponent designs with
packaging hierarchy. We call this integrated sys-
tem, MSS (Multicomponent Synthesis System) [10].
Design tradeoffs are performed by considering vari-
ous partitions and carrying out scheduling and per-
formance estimation on proposed partition segments.
The performance attributes of the synthesized RTL de-
signs are determined and compared against the capac-
ity and cost constraints imposed by the packages they
are bound to. Also, a global controller is automati-
cally placed on a partition segment and interconnected
with the RTL design segments. The global controller is
placed on a partition segment whose package has the
most space to fit the controller. Details of the con-
troller model to support multicomponent partitioning
are discussed in [13. 14, 16].

165

BelavionlVHDL

(Mclapl. «mang Pin i«i)

 L.......
i AM. Ootk ipwd. Pino

Bfaril

TTT
BCavnonl SyBlm

UY«M RTL«

Hkruehial RT UMI Dcä^L bavaded » PictatB*

Figure 2: Hierarchical Behavioral Partitioning
for Multicomponent synthesis

At the end of multicomponent synthesis and hi-
erarchical package design we have a multicomponent
design composed of interacting RTL design segments.
The behavioral partitioning phase produces multiple
behavior segments that are completely synthesized to
RTL designs using a high level synthesis system such as
DSS [12,13]. Also produced is a hierarchical structural
design (the leaf nodes in this design are the individ-
ual RTL designs) that is mapped onto efficient cost-
effective packages from a package library. We func-
tionally validate our approach by simulating the hi-
erarchical RTL design and the input behavior for the
same set of test vectors and comparing their outputs.

5 Results
We present results for a number of examples to

demonstrate the validity of our behavioral partitioning
approach for multicomponent synthesis and hierarchi-
cal package design. Details of our package library is
shown in Table 1. Data about area, pin, switching ac-
tivity, and clock speed constraints supported by each
package and the cost of the package are presented.
Table 2 presents details of the number of lines of code
in behavior level VHDLspecification and the number of
processes for each of our examples.

Move Machine: The instruction set of the Move
Machine controls instruction and data flow. It does
not compute any data values. ALU operations are

UP Name

Tinyl
Tiny2
Tinv3
Tiny4
Smaill
Small2
Sraall3
PÜA-1
PGA-2
PGA-3
PGA-4
PGA-5
PGA-6

"TTT
"PTI"
"PTT

"PTT
Cer-l
Cer-2
Cer-3

PGA-1C
PGA-2C
PGA-3C
PGA-4C
PGA-5C
MCM-1
MCM-2
MCM-3
Board-1
Board-2
Board-3

Board-4
Board-5
Board-6

MP)' I B(p)

12
15
18
20
12
IS
IS
20
20
20

12
IS
13
18
20
12
15
18
20
20
200
300
400
300
400
500
600
800
1000

40
40
40
40
40
40
40
84
84
84
84
84
169
40
40
40
40
40
40
40
40
84
84
84
84
169
169
169
169
80
SO
128
128
128
128

H(pp | T(p)-

50
60
80
120
150
200
200
200
300
400
500
800

50
50
50
50
50
50
50
50
50
50
50
50

1000

50
60
80
120
150
200
250
300
220
320
450
850

1000

1000
2000

3000
2000

3000
4000

5000
8000
12000

50
50
50
50
50
50
50
50
50
50
50
50
50
50
75
75
75

100
100
100
100
100
100

C(p>*

400 I

500
600 I

700
800
900
1000
1200
1300

1400
1500

1600

1800

250
300
350
400
450
500
550
600
800
900
1000

1200
1500

10000
15000
20000
300
400
500
600
800
1200

sq. mm; + : 1000 node switches; - : ns; #
Table 1: Package Alternatives

assumed to be memory mapped. Fifo: Fifo models
a producer consumer problem. Shuffle: The Shuffle
is a high speed reconfigurable 32 bit shuffle-exchange
network for parallel signal processing. The Shuffle
exchange is a commercial product of Texas Instru-
ments, Inc. dyn is a five process description that
monitors and maintains the dynamic length and maxi-
mum length to which a queue in a producer-consumer
problem grows, alu is a nine process description of
an arithmetic logic unit. dynl-dynlO and alul-alvö
are multiple processing elements generated by making
multiple instantiations of dyn and alu respectively.

5.1 Multicomponent Synthesis and Hier-
archical Package Design

Tables 3 and 4 present results of multicomponent
synthesis and hierarchical package design for the de-
sign examples in Table 2 with the package library
shown in Table 1. For the smaller examples (Move Mc
- dyn2), Table 3 presents: (1) number of processes; (2)
hierarchical partition segments mapped onto packages

166

1 Example | Num Lines (VHDL) | Num Proc j

Mv Mc 73 3 1
Fifo 65 3 I
Shuffle 472 5 1
dynl 132 5 |
dyii2 254 10 1
dyn3 376 15 j
dyn4 498 20 1
dynS 620 25 j
dyn6 742 30 |
dyn7 864 35 |
dyn8 986 40 |
dyn9 1108 45 |
dynlO 1230 50 1
alul 100 9 1
alu2 188 18 |
alu3 276 27 |
alu4 364 36 |
alu5 452 45 |

Table 2: Design Data for Examples

from the package library (at level 1, partitioning of
processes into segments, synthesized eventually into
RTL designs); (3) actual number of back-tracks by the
hierarchical partitioning and package design algorithm
and the limit on number of back-tracks (BTK); (4) ac-
tual cost of the design and the cost constraint; and (5)
execution time. With a large number of processes it is
difficult to present assignment of processes to partition
segments, hence for dyn3 - dyn4, Table 3 presents the
number of processes on each level 1 partition (instead
of presenting individual partitions). With an even
larger number of processes, it is difficult to present
even details of level 2 partition segments. Thus, Ta-
ble 4 presents the following data for all designs in Ta-
ble 2: (1) number of processes; (2) number of back-
tracks/BTK; (3) actual cost/constraint; and (4) exe-
cution time.

For each example, the cost constraint was progres-
sively tightened until the algorithm failed to find a
cost-satisfying solution. In all cases, if a constraint-
satisfying solution existed, it was discovered by the
algorithm. This was verified by manual examination
of the examples. The results establish the validity of
the algorithm. An interesting observation that vindi-
cates our choice of the back-tracking algorithm is that
in all our examples the most times the algorithm ever
back-tracks is three (Table 4). This is because the al-
gorithm back-tracks only if it can potentially find a
solution with better cost and, also, the algorithm con-
verges to a constraint-satisfying solution fairly rapidly.

Multicomponent Synthesis vs Hierarchical

RTL Partitioning: We also developed a Hierarchical
RTL partitioner [14] as an alternative approach. Here,
we synthesize the input behavior and the partition the
resultant RTL design. Table 5 presents a comparison
of hierarchical behavioral partitioning and hierarchi-
cal RTL partitioning approaches. Blanks indicate that
the input design was too large to be handled by the
RTL partitioner. For each example, the better dol-
lar cost solution is bold-faced. RTL partitioning yields
better designs for smaller examples where the number
of synthesized RTL components is relatively small (<
200). For larger examples multicomponent synthesis
clearly out-performs RTL partitioning in the quality of
solutions. Also, the time taken by RTL partitioning is
more than the time taken by multicomponent synthe-
sis by an order of magnitude (two orders of magnitude
for larger examples - alu4, dyn3).

Hierarchical Package Design without
Scheduling: Since scheduling and performance es-
timation are time consuming, we modified HCP and
KWAY by replacing the schedule and performance esti-
mation steps by approximations for area and switch-
ing activity. In this approach, individual processes are
first scheduled and performance estimated. Then, for
level 1 segments, the area and switching activity costs
of the individual processes in the segment are summed
to obtain the total area and switching activity of the
overall segment. These numbers are then adjusted by
a small percentage (10-30%) to take into account the
possible sharing of resources if the processes had been
actually scheduled together[14]. Table 6 presents re-
sults of hierarchical partitioning and package binding
with and without an integrated scheduling and perfor-
mance estimation step.The better dollar cost for each
example is bold-faced. Invalid indicates that at least
one of the partition -segments at level 1 does not fit
on available packages; thus,...the design is not valid.
The approach with scheduling out-performs the ap-
proximation method, especially for the larger designs.
However, (a) execution time for the approximation
method is very small; and (b) the estimated cost of
packaging the designs are fairly close to the solution-
sreported by the algorithm with embedded scheduling
algorithm. Thisobservation indicates that the approx-
imation algorithm should be usedto quickly generate
approximate dollar cost constraints to be imposed on
the rigorous algorithm.

6 Conclusions and Discussion
We have presented a hierarchical behavioral par-

titioning and package design algorithm. We demon-
strated a methodology to integrate our partitioner
with a high level synthesis tool to create a multicom-
ponent synthesis and hierarchical package design en-

167

Example
No. of
Procs

Segments and Mapping Num
Bklrk/

BTK

Cost/
Constraint

(S)

Exec
Time

(s) LeveKJ Levei-2 Level-1

Mv Mc 3 jjl-Board-1 JU-PGA-5C .»l-PGA-o-
EXE

1/10 5600/5000 6

JU-^üA-IC; a^-fuA-l
FET. DEC

Fife 3 jjj-Board-1 au-Pi-5 .»l-Smaill
FIFO

PRODUCER
CONSUMER

0/10 1550/3000 2.7

atuitae 5 i21-öoard-2 »U-PÜA-4C; Jt-PÜA-4
shuffle-l

0/10 13900/12000 59.8

«la-ruA-u; *2-füA-4
shuffle-2

«is-fUA-u; j3-r-UA-4
shuffle-3

axt-r'UA^t;
shuffle-4

ais-fUA-Jc; «5-fUA-4
output

dynl 5 jjj-Board-l au-Cer-3 *1-Small3
sl.p_l,sl-p-pt

. sl-p-sl.sl-p-2
sl-p-st

1/10 1900/2000 3.6

alul 9 j21-Board-1 »u-Cer-2 31-PUA-l
sl-nbp,sl_nap
sl-np,sl-outp

1/10 3100/2500 100.7

32-Lmy I
sl_mp,sl-ap

sl.op
»12-fl-l 33-liny 1

sl-dp,sl_sp
dyn2 10 J2i-Board-1 3n-Cer-3 «1-Small-1

s2_p_sl,s2-p-pt
s2.p-2

2/10 3350/3200 212.7

.»2-iinyl
s2_p.st,sl_p_st

»12-fl-ö 53-ämaul
sl_p_sl.sl_p.pt
sl.p_l,sl_p__

dyn3 15 S2i-Board-l «ll-Pl-3 ai-Tiny-3
3 procs

1/10 5000/5000 126.1

«12-P1-5 32-Smaiil
4 procs

a^-rU-ö S3-small 1
4 procs

ai4-r-l-ö S4-Smaiil
4 procs

alu2 18 421-Board-1 «H-PGA-3C ai-PGA-3
6 procs

1/10 6700/5000 412.8

^12-^1-5 32 -small 1
5 procs

JH-fUA-UU a3-iinyl
1 proc

S4-imyl
3 procs

Js-linyl
2 procs

JH-r-l-l 3s-1 my I
1 proc

dyn4 20 32i -Board-1 3U-P1-5 Jl-SmaHl
S procs

0/10 6350/8000 229.3

312-P1-1 .52-liny 1
1 proc

Jl3-<Jer-2 53-Small.
6 procs

4n-r*l- 3 «4-iiny.i
3 procs

«is-r-1-4 Ss-liny4
*4 procs

sis-r^-l j$-lmyl
1 proc

Table 3: Multicomponent Synthesis with Hierarchical Package Design Results
Note: s-p denotes the mapping of segment s onto package p from the package library. Also, at level 1, number of
processes on each partition segment are presented.

168

Example
No. of
Procs

Num BkTrk/
BTK

Cost/Constraint
(S)

Exec
Time (s)

dynö 25 0/10 8350/8000 349.5
alu3 27 0/10 12700/8000 579
dyn6 30 1/10 9850/9000 1470.7
dyn7 35 2/10 11200/10000 3141
alu4 36 3/10 14100/15000 1549.4
dyn8 40 1/10 11850/12000 1863.5
dyn9 45 1/10 13800/13000 3684.1
aluö 45 2/10 17750/18000 1626.4 |
dynlO 50 2/10 16850/15000 6452.2 |

Table 4: Multicomponent Synthesis and Package Design Results (Contd ...)

Example
Num
Proc

Num
RTL

Comp

riierarcaical
Behavioral Partitioning

Hierarchical
RTL Partitioning

Cost (S)
Constr.

•btlc/
BTK

Cost
(S)

tixec
Time (s)

Btk/
BTK

(Jost
(S)

bxec
Time (s)

Mv Mc 3 53 1/10 5600 6 0/10 4250 13.2 5000
rifo 3 76 0/10 1550 2.7 0/10 1750 6.4 3000
Shuffle 5 379 0/10 13900 59.8 - • - 12000
dynl ö 128 1/10 1900 3.6 0/10 1550 11.9 2000
aiul 9 65 1/10 3100 100.7 0/10 1900 6.5 2500
dyn2 10 234 2/10 3350 212.7 0/10 6200 6560 3200
dyn3 10 334 1/10 5000 126.1 d/lö 530Ö0" 113272 5000
aiu2 IS 123 l/lÖ 6700 412.8 0/10 5400 2976 5ÖÖÖ
dyn4 20 - 0/10 6350 229.3 - - - 8000
dynö 25 - 0/10 8350 349.5 - - - 8000
alu3 27 161 0/10 L 12700 5« 0/10 10850 62äl 8000
dyn6 30 - 1/10 9850 1470.7 - - - 9000
dyn" 35 - 2/10 11200 3141 - - - 10000
aiu4 36 205 3/10 14100 1549.4 0/10 53600 109850 15000
dyn8 40 - 1/10 11850 1863.5 - - - 12000
dyn9 45 - 1/10 13800 3684.1 - - - 13000
aluö 45 - 2/10 17750 1626.4 - - - 18000
dynlO 50 - 2/10 16850 6452.2 - - - 15000

Table 5: Behavioral Partitioning vs RTL Partitioning approaches

Example
Num
Proc

With Scheduling W ithout Scheduling
Cost (S)
Constr.

Btk/
BTK

Cost
(S)

hxec
Time (s)

btk/
BTK

(Jost
(S)

hxec
Time (s)

Füo ■3 0/10 1550 2.7 0/10 1550 1.1 3000
Shuffle 3 0/10 139Ü0 59.S 0/10 13900 29.8 12000
dynl 5 1/10 1900 3.6 0/10 1900 1.4 2000
aiul 9 1/10 3100 100.7 0/10 3550 11.3 2500
dyn2 10 2/10 3350 212.7 1/10 3600 9 3200
dyn3 15 1/10 5000 126.1 0/10 Invalid 5.8 5000
alu2 18 1/10 6700 412.8 1/10 6800 76.2 5000
dyn4 20 0/10 6350 229.3 0/10 7150 10.3 8000 |
dyn5 25 0/10 8350 349.5 0/10 Invalid 12.4 3000
alu3 27 0/10 12700 579 1/10 11250 248.9 8000
dyn6 30 0/10 9000 650 0/10 Invalid 26 9000
dyn 7 35 2/10 11200 3141 1/10 11850 252.5 10000
alu4 36 3/10 14100 1549.4 1/10 Invalid 77.S 15000
dyn8 40 1/10 11850 1863.5 1/10 Invalid 438.9 12000
dyn9 45 1/10 13800 3684.1 2/10 Invalid 708.1 13000 |
alu5 45 2/10 17750 1626.4 1/10 invalid 1092 18000 I
dyn 10 50 2/10 16850 6452.2 2/10 Invalid 875 15000 |

Table 6: Multicomponent Synthesis: With vs Without Scheduling

169

vironment, MSS (Multicomponent Synthesis System)
[10]. MSS takes as input a multi process VHDL be-
havior, a parameterized component library, a package
library, and an overall cost constraint on the design
and generates a hierarchical RTL design while simulta-
neously constructing a physical package hierarchy for
the design.

We presented results to evaluate the performance
of the approach with respect to the quality of de-
signs produced and execution times for a number of
design examples. Hierarchical RTL partitioning and
package design yields good results for examples where
the number of RTL components in the synthesized de-
sign are less than 200. When partitioning at the RTL
netlist level, the design architecture is frozen (during
high level synthesis). Alternate multichip designs can-
not be explored during hierarchical RTL partitioning,
whereas MSS explores the design space by considering
alternate implementations during high level synthesis.
Also, thermal profiling of RTL designs is too time con-
suming and is not viable for large designs. For almost
all the examples, MSS produces better results and ex-
ecutes much faster than the hierarchical RTL partition-
ing. For smaller designs, scheduling overhead can be
reduced through approximate estimation procedures
to evaluate the cost of level 1 segments form individ-
ual process costs. From the results, we infer that the
hierarchical behavioral partitioning is both a suitable
and a viable approach to multicomponent synthesis
and hierarchical packaging.

References
[1] M.C. McFarland, A.C. Parker, and R. Camposano,

"Tutorial on High-Level Synthesis," Proc. 25th De-
sign Automation. Conference, pp. 330-336, June
1988.

[2] M.C. McFarland, A.C. Parker, and R. Camposano,
"The High-Level Synthesis of Digital Systems,"
Proc. of the IEEE, Vol. 78, No. 2, pp. 301-318, Feb.
1990.

[3] R. Camposano, "From Behavior to Structure:
High-Level Synthesis," 'IEEE Design & Test of
Computers, pp. 8-19, Oct. 1990.

[4] K. Kucukcakar, "System-Level Synthesis Tech-
niques With Emphasis on Partitioning and Design
Planning," Ph.D. Dissertation, Dept. of Electrical
Engineering-Systems, University of Southern Cali-
fornia, CA, Oct. 1991.

[5] F. Vahid and D.D. Gajski, "Specification Parti-
tioning for System Design," Proc. 29th Design Au-
tomation Conference, pp. 219-224, June 1992.

[6] R. Gupta and G. De Micheli, "Partitioning of
Functional Models of Synchronous Digital Sys-
tems," Proc. ICCAD-90, Santa Clara, pp. 216-219,
Nov. 1990.

[7] Nand Kumar, Srinivas Katkoori, Leo Rader and
Ranga Vemuri, "Profile-Driven Behavioral Synthe-
sis for Low Power VLSI Systems", IEEE Design &
Test of Computers, pp. 70-84, Fall 1995.

[8] R. Dutta, "Distributed Design-Space Exploration
for High-Level Synthesis Systems," Master's The-
sis, Dept. of Electrical and Computer Engineering,
University of Cincinnati, OH, 1991.

[9] P.G. Paulin and J.P. Knight, "Force-Directed
Scheduling for the Behavioral Synthesis of ASIC's,"
IEEE Trans. Computer-Aided Design, Vol. 8, No.
6, pp. 661-679, June 1989.

[10] R. Vemuri et al, "An Integrated Multicompo-
nent Synthesis Environment for Multichip Mod-
ules," Computer, pp. 62-74, April 1993.

[11] CM. Fiduccia and R.M. Mattheyses, "A Linear-
Time Heuristic for Improving Network Partitions,"
Proc. 19th Design Automation Conference, pp. 175-
181, June 1982.

[12] J. Roy, N. Kumar, R. Dutta, and R. Vemuri,
"DSS: A Distributed High-Level Synthesis System,"
IEEE Design & Test of Computers, pp. 18-32, June
1992.

[13] J. Roy, "Parallel Algorithms for High-Level Syn-
thesis," Ph.D. Dissertation, Dept. of Electrical and
Computer Engineering, University of Cincinnati,
OH, Feb. 1993.

[14] N. Kumar, "High Level VLSI Synthesis for Mul-
tichip Designs" Ph.D. Dissertation, Dept. of Elec-
trical and Computer Engineering, University of
Cincinnati, OH, Oct. 1994.

[15] R. Dutta, J. Roy, and R. Vemuri, "Distributed
Design-Space Exploration for High-Level Synthesis
Systems," Proc. 29th Design Automation Confer-
ence, pp. 644-650, June 1992.

[16] N. Narasimhan, J. Roy, and R. Vemuri,
"Synchronous Controller Models for Synthesis from
Communicating VHDL Processes." Proc. Ninth In-
ternational Conference on VLSI Design, pp. 198-
204, Jan. 1996.

10

170

APPENDIX. :K:
Resource Constrained RTL Partitioning for Synthesis of

Multi-FPGA Designs*

Madhavi Vootukuru, Ranga Vemuri and Nand Kumar *
Laboratory for Digital Design Environments

Department of Electrical and Computer Engineering and Computer Science
University Of Cincinnati, ML 30

Cincinnati, OH, 45221-0030.

mvootuku@ece.uc.edu, ranga.vemuri@ece.uc.edu, nkumar@triquest-da.com

Ph : 513-556-4784

"This work is being done at the University of Cincinnati and is supported in part by the ARPA RASSP program and

is monitored by Wright Patterson Air Force base under contract no. F33615-93-C-1316 and by the Solid State Electronics

Directorate of the Wright Laboratory of the US Air Force under contract no. F33615-91-C-1811.

*Nand Kumar is currently Vice-President of synthesis, at Triquest DA Inc.

171

Resource Constrained RTL Partitioning for Synthesis of
Multi-FPGA Designs

Abstract

In this paper we address the problem of partitioning register level designs for implementation on multiple FPGAs.

The partitioner uses a modified multi-way Fiduccia-Mattheyses (FM) algorithm. Cost estimation functions needed

by the partitioner to estimate the resources needed by the design on a FPGA have been developed. The methodology

for estimation of resources on an FPGA device, and partitioning of the design are discussed in detail. For this

paper, we use Xilinx XC4000 family of FPGAs as our target architecture. Within this family, heterogeneous

selection of FPGA devices can be used.

1 Introduction

A design that has to be implemented on a Field Programmable Gate Array (FPGA) needs certain resources on

the FPGA device. The kind of resources on the chip depend on the target architecture. These resources include

the Configurable Logic Blocks (CLBs) containing the Function Generators (FG) and Flip-Flops (FF) for Xilinx

architecture of FPGAs. If the design which has to be down-loaded onto an FPGA needs more resources than

available on one device, there is a need to partition the design into multiple segments such that each of the

partition segments satisfies resource constraints on the devices available. To achieve this goal, we formulate the

Multi-FPGA partitioning problem for Register transfer level (RTL) designs as follows:

Given a register level design represented as a net-list of components and constraints in terms of

maximum number of available CLBs, function generators, flip flops and allowable user I/O pins

on each chip, partition the design into a set of interconnected design segments, each of which

satisfies the constraints.

The partitioning system creates one or more bit map files depending on the specified constraints. Each bit-map

file can be down-loaded onto a Xilinx xc4000 family FPGA. Input to the system is a register level design which

consists of a data-path and a controller. The data-path consists of a collection of components selected from

a known parameterized component library. This library has various components such as adders, subtractors,

multipliers, dividers, latches, multiplexers etc. The controller is specified as an algorithmic behavioral description

of a finite state machine. These components are further discussed in detail in later sections of the paper.

2 Integration of tools for Synthesis and partitioning of FPGA designs

We use a high level synthesis system which takes behavioral descriptions as input and produces register transfer

level descriptions of the same design. The high level synthesis system is called Distributed Synthesis System

(DSS), developed at The University of Cincinnati [?], for producing RTL designs. The system produces register

transfer design in two parts, namely, the 'data-path' and the 'controller'. The data-path is represented as a

net-list of register transfer level components. The controller is represented as a finite state machine.

The input to the multi-FPGA partitioning system is a register level design (output of DSS) and the constraints are

the FPGAs available, the library of RTL components, and the resource utilizations of all register level components

1

172

Behavioral
design

Module
librarv

DSS

Register level
< 'design

Multi-FPGA
Partition«*

7
Multiple RTL

' rdesigns

Resource
Estimator

Synopsys design
analyzer

X2inx netliit
format

XilinxXACT
design manager

FPGA
Bit stream

Figure 1: Multi-FPGA synthesis flow

for varying generic parameters. Resource estimator and the partitioning algorithm form the central components

of the partitioning process. Resource estimation involves accurate estimation of necessary resources for the design

and the partitioning involves the proper choice of design segments which satisfy user specified constraints. The

resources here refer to the number of CLBs (packed CLBs), the number of function generators, and the number

of flip-flops. Pin constraints are also taken into account while determining the partitions. If the design cannot be

partitioned into the available number of chips, each with allowed number of I/O pins, the partitioner returns the

best possible solution obtained during the specified number of iterations on the K-way FM partitioning algorithm.

The resource estimator works on the data-path and the controller separately and gives estimates for the overall

design using these individual estimates. Once the estimation is done, it is determined whether the given design

needs to be partitioned or not depending on the resources needed by the design and the specified selection of

FPGA devices. The partitioner is invoked if needed. It uses a modified multi-way Fiduccia-Mattheyses algorithm

[?], discussed later, to produce partition segments which satisfy the constraints. These partitions are used as

input to logic synthesis tools to generate bit-map files. The design flow for obtaining programmed bit-map files

for FPGAs is shown in Figure 1. We use the Synopsys design analyzer for logic synthesis of partitioned RTL

designs. This produces a gate level net-list of the design in terms of hard macros and function generators from

Xilinx library. Since our target implementation is Xilinx FPGA devices, we use Xilinx XDM tools for generating
layouts and producing bit-map files necessary to down-load the design onto the FPGA.

3 RTL component library

The data-path part of the register level design contains components selected from a RTL component library.

These components in turn use hard macros from Xilinx XC4000 family. The descriptions of these components

were initially written at behavioral level and ideally, the synthesis tools should be able to understand all of the

173

Component Xilinx Hard
Macros used

Const_reg Buf
Adder Addl, Vcc, Inv

Subtracter Addl, Gnd, Inv
Comparator Nor2, And2bl,And2, Inv,

And3bl,Xnor2
Latch FDCE

Multiplexer M2_l
Shift-reg And2, Or2, Or3

Signal And2, And3, And4, Inv,
FDPE, 0r2, Xnor2, FDCE

And And2
Or Or2
Nor Nor2
Xor Xor2
Xnor Xnor2
Not Inv

Table 1: RT level Components in component library instantiated in RT level code

currently available target architectures and synthesize the descriptions for a particular target architecture. In this
process, the synthesis tool might produce a gate-level design, which when taken to layout might be violating the

area constraints, or might be so computationally intensive that it takes several hours to synthesize. To overcome

these problems, the register level components used in our library instantiate the Xilinx library components directly

and thus are targeted for Xilinx xc4000 family of FPGA family. These components are parameterized for varying

values of bit-width. Apart from this, components like Multiplexer are parameterized for other generics like number

of inputs and number of select lines. Table 1 shows the components and the corresponding Xilinx hard macros

used.

Each library module is characterized for the number of CLBs, function generators and flip-flops for different values

of generic parameters. This characterized data is made available to the partitioning tool in the format shown

in Table 2. This data was obtained experimentally by synthesizing several instances of each of the components
with varying generic parameter values and generating the Xilinx LCA (Logic Cell Array) files. In this table,

FF, FG and CLB denote the necessary number of flip-flops, function generators and CLBs respectively for each

component. Each entry in this table is of the form (x,y) where 'x' is the bit-width of the component and 'y' is

the resource needed. Note that the Table 2 shows only a small selection of the data for our library. For example,

the resource utilizations for the multiplexer module are for 2 inputs and 1 select line.

4 Resource Estimator

Estimation functions for estimating the number of function generators, flip-flops and CLBs needed for an input

design have been developed. Estimation of resources needed by a design represented as a data path and a

174

controller can be done by considering each of these entities separately.

Estimates for data-path : We estimate the number of function generators and flip-flops needed by the data

path and use this data in determining the number of CLBs needed by the whole design when it is taken to layout.

To estimate the number of function generators and flip flops, we add up these values for all the instantiated

components. The generic values used to instantiate various register transfer level components, and their respective

resource utilizations are obtained through table-lookup from the system database (Table 2). Logic trimming done

at gate level is taken into account by reading the input net-list, and determining the signals not being used. In

other words, we determine the load-less signals, if any, in the design. This does not happen frequently in the case

of synthesized designs. However, for modules such as the "signal" module in Table 2, which contains multiple

flip-flops, outputs of some flip-flops may not be used. The flip-flops FDPE and FDCE are the hard macros

used in Xilinx FPGAs to store the bits in the clocked components. Once the load-less signals are determined,

the corresponding number of flip-flops used to store these signals is subtracted from the number obtained by

summing up the individual component flip-flop counts in the design. This gives the number of flip-flops necessary

for the data-path. A similar procedure is followed for obtaining an estimate of function generators used by the

data-path.

• No. of Flip-Flops needed by data-path {FFdp)= £re<fP FF.count(r) - J2,ZL UFF.count(s)

where, FF.count{r) is the number of Flip-flops of individual register level components, UFF-COunt{s) is

the unused flipflop count of component whose output signal is V and L is the set of load-less (unconnected)

signals in the data-path.

• No. of Function Generators needed by the data-path {FGdp)^ Ylr£dp FG-count(r)~J2seL UFG-count{s)

where, FG-count(r) is the number of Function generators of individual register level components in data-

path, UFG-count(s) is the number of unused function generators of component whose output signal is 's'

and L is the set of load-less signals in the data-path.

Since each CLB in XC4000 family of FPGAs has 2 function generators and 2 flip-flops, the number of packed

CLBs needed is determined to be half the number of flip-flops (function generators) for designs with dominating

sequential (combinational) logic, that is, dominating number of flip-flops (function generators). That is,

No. of Packed CLBs needed by the data-path = 0.5 * Max(FFdp, FGdp)

Estimates for controller : The necessary number of function generators and flip-flops in the controller part of

the design can be estimated by studying the description of the finite state machine (FSM). The number of states

in the controller is the main factor which determines the amount of logic required on the chip. The number of

state variables depends on the number of states in the FSM and is given by /o^2(number of states). A register

whose bit-width is equal to the number of state variables is needed to store the present state and next state

variables.

The elaborated FSM is represented as a set of multiplexers and gates by the logic synthesis tool. The size of

inputs and select signals to the multiplexers was found to be proportional to the control word length, and number

175

S.No. Module

Name

(Bit-width, Resource count)

1 Latch FF : (1,1),(2,2),(4,4),(8,8),(16,16)
FG : (1,0),(2,0),(4,0),(8,0),(16,0)

CLB : (1,1),(2,1),(4,2),(8,4),(16,8)

2 Multiplexer FF : (1,0),(2,0),(4,0))(8,0),(16,0)

FG : (1,1),(2,2),(414),(8,8),(16,32)

CLB : (1,1),(2,1),(4,2),(8,4),(16,16)

3 Signal FF : (1,7),(2,12),(4,19))(8,35)J(16,67),(32,80)

FG : (1,3)1(2,5),(4,7),(8,13),(16,25),(32,40)

CLB : (1,4)>(2,6)1(4,10),(8,17),(16,34),(32,40)

4 Comparator FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0)

FG : (1,3),(2>8),(4,18),(8,37)1(16I38),(24,60),(32,157)

CLB : (1,1),(2,4),(4,9),(8,18),(16,19),(24,30),(32,78)

5 And FF : (ll0),(210),(4,0)>(8,0),(16>0) (32,0),(64,0)
FG : (1,1), (2,2), (4,4), (8,8), (16,16) (32,32), (64,64)
CLB : (1,1), (2,1), (4,2), (8,4), (16,8) (32,16), (64,32)

6 Or FF : (1,0),(2,0),(4,0),(8,0),(16,0) (32,0),(64,0)

FG : (1,1), (2,2), (4,4), (8,8), (16,16) (32,32), (64,64)

CLB : (1,1), (2,1), (4,2), (8,4), (16,8) (32,16), (64,32)

7 Nor FF : (1,0),(2,0),(4!0),(8,0),(16,0) (32,0),(64,0)

FG : (1,1), (2,2), (4,4), (8,8), (16,16),(32,32), (64,64)

CLB : (1,1), (2,1), (4,2), (8,4), (16,8) (32,16), (64,32)

8 Xor FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0)

FG : (1,1), (2,2), (4,4), (8,8), (16,16),(32,32), (64,64)
CLB : (1,1), (2,1), (4,2), (8,4), (16,8),(32,16), (64,32)

9 Xnor FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0)
FG : (1,1), (2,2), (4,4), (8,8), (16,-16) (32,32), (64,64)

CLB : (1,1), (2,1), (4,2), (8,4), (16,8),(32,16), (64,32)

10 Const_reg FF : (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (16,0)

FG : (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (16,0)

CLB : (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (16,0)

11 Adder FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0)

FG:(1,1),(2,3),(4,6),(8,12),(12,18),(16,24),(20,30),(32;48),(64,64)

CLB:(1,1),(2,1),(4,3),(8,6),(12,9),(16,12),(20,15),(32,24),(64,32)

12 Subtractor FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0)

FG : (1,1),(2,3),(4,6),(8,12),(12,18),(16,24),(32,48),(64,64)

CLB:(1,1),(2,1),(4,3),(8,6),(12,9),(16,12),(20,15),(32,24),(64,32)

13 Shift-Reg FF:(1,3),(2,4),(3,6),(4,8),(5,10),(6,12),(7,14),(8,16)(16,32),(32,40)

FG : (1,1),(2,4),(3,6),(4,8),(5,10),(6,12),(7,14),(8,16) (16,32),(32,40)

CLB : (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,7) (16.16),(32,20)

14 Not FF : (1,0),(2,0), (3,0),(4,0), (5,0),(6,0),(7,0),(8,0), (16,0),(32,0)

FG : (1,0), (2,0), (3,0),(4,0), (5,0),(6,0),(7,0),(8,0), (16,0), (32,0)

CLB : (1,0), (2,0), (3,0),(4,0), (5,0),(6,0),(7,0),(8,0), (16,0), (32,0)

Table 2: Data provided in Component-data file (input to estimator)

176

of function generators was found to be proportional to the number of states in the FSM. We conducted a series

of experiments and found that the number of function generators needed by the FSM is lesser if the control

word in the FSM depends only on the current state (Moore machine) rather than on the current state and the

control inputs (Mealy machine). The number of gates (and hence the number of function generators) needed

by the FSM depends on the number of nested 'case' statements in the FSM description in VHDL. This implies

that every time the input flags or input state bits are checked for assigning a value to the output of FSM, the

number of gates/function generators increase. Using a large number of designs, the increase was found to be 3

function generators for each nested 'case' statement. Hence the factor 3 in the equation below. The length of the

control word, which is the output of the FSM does not significantly affect the amount of logic necessary for the

controller. On the other hand, number of states in the controller has a major influence on the resources needed on

an FPGA. We found that there is almost an exponential increase in the number of function generators necessary

with increasing states in a controller. This is due to the extra logic that is needed for assigning values to the

signals for each state that is included in the finite state machine. The exponent S was determined to be 2.0. This

was found by varying the number of states in the controller, keeping all the other factors constant and producing

LCA of the FSM.

• No. of flip-flops needed by controller {FFe) = No. of state variables in the FSM.

• No. of function generators needed by the controller (FGC) —

No. of state variables ** S +

No. of bits in control word * C +

No. of nested 'case' statements * F

where, S = 2.0, C = 0.3 and F =3.

Since the number of function generators in a FSM is usually much larger number than the number of
state variables (number of flip-flops) in the FSM, the number of packed CLBs needed by the controller is
estimated to be half of the number of function generators.

• No. of Packed CLBs needed by the controller = 0.5 * Max(f\Fc, FGC)

Estimates for the complete design : Estimates of resources needed by data-path and controller can be used

in determining the number of function generators, flip-flops and packed CLBs needed by the complete design.

• The number of function generators in the complete design {FGRTL) = (FGdP +FGC). For tighter estimates,
a multiplication factor G can be taken into account, where G represents the global optimization factor.

By synthesizing and analyzing a large number of designs, we found that the global optimization factor is

found to lie between 0.6 and 0.9 depending on the amounts of combinational and sequential logic involved
in the design.

• Number of flip-flops in the complete design (FFRTL)= FFdP + FFC

• Packed CLB count for the complete design (CLBRTL) = 0.5 * M&X(FGRTL, FFRTL)

177

5 Partitioning Algorithm For Producing Multiple FPGA designs

Partitioning of a design involves determining the constraints such as the overall resource utilizations on an FPGA,

and constructing the partitions subject to these constraints.

The partitioner takes the input RTL net-list and produces multiple RTL design segments. Each segment is subject

to the following constraints:

1. Resource Constraint: The resources required by any segment of the design should not exceed the maximum

allowed values set by the user on the particular FPGA part number. The constraints here refer to number

of CLBs, function generators and flip-flops present in the FPGA device made available to the partitioning

system. Let these constraints be denoted by CLBS, FG, and FFS, where V denotes an FPGA device

available.

2. Pin Constraint: Because of the limitation on the number of user I/O pins on any FPGA chip, we partition

the input design into segments in such a way that the interconnect between the segments does not need

more I/O pins than available. In other words, the number of pins on any segment should not exceed the

allowed number of user I/O pins P, on each chip. This is checked for all the partitions of the design.

3. Overall design constraint: Number of segments after partitioning should not exceed the allowed number of

FPGA devices.

We use the modified multi-way Fiduccia-Mattheyses algorithm [?] for partitioning an input design into multiple

design segments. The multi-way FM partitioning algorithm used is shown in Figure 2. The partitioner begins

by reading the package library. This package has the information about the FPGA devices available in the
format shown in Table 6. The number of partitions is initialized to 1, and the FM partitioner is invoked with the

number of partitions and the package library. The FM partitioner in turn invokes the K-Way Fiduccia-Mattheyses

algorithm which works on the input design (in the form of a Graph 'G'), the number of required partitions and

the FPGA package. It returns a Result, which is a flag to indicate whether or not all the partition segments are

assigned a device. In the event when the Result is false (that is, not all partition segments have a fitting chip

amongst the devices made available by the user), the partitioner increments the number of required partitions

and repeats the above process while this number does not exceed the total number of available devices, or till a

successful mapping of partition segments to FPGA devices is found.

The K-Way partitioner initializes the values of total number of CLBs, function generators and flip-flops for the
whole design, which are obtained as output of the estimation functions. It then determines the minimum number

of FPGAs needed by the design. This is calculated as,

Minimum number of partition segments = \Packed CLBs for complete design / MaxCLB]

where, MaxCLB = Number of CLBs available on the largest FPGA device available.

Once the number of chips is determined, a random initial partition of N partition segments is created by the

K-Way FM algorithm, where N is the minimum number of chips. As a result, the graph G of V vertices is

partitioned into N segments, each with a fixed number of nodes. The initial partition is saved as Best partition.

The pins on all partitions are calculated by compute_pins_on_all_partitions() and the value saved as best.pins. K-

Way partitioning is carried out by repeatedly invoking the standard FM bi-partitioning algorithm [?] on pairs of

178

Multi_way_FM_Partitioner()

begin

Package_ptr +— Read_package_data()

Num_of_partitions =1
While (Num_of_partitions <= Available_nunxxif_chips)

Result <—' FM(Num_of_partitions, Package.ptr)

if (Result =1) then
return partitions

else

Num_oLpartitions *— Num_of_partitions + 1

end while

if (Result = 0) then

return Best possible partition and prompt user for bigger FPGA devices

end if

end

int FM(Num_of_partitions, Package_ptr)
begin

Initialize_private_data()

K-way(G, Num_of_partitions, Package.ptr)

Result «— Check_assigned_chips()

return Result

end

Figure 2: Algorithm for Multi-Way FM partitioning

partition segments. two_wayJm() tries to improve bi-partitions by moving one node at a time from one partition

to the other. Each time a move is made, ckeck.chip.constraint(S) is invoked to ensure that each partition segment

satisfies the constraints. This function checks if the partition segment S satisfies the constraints such as CLBs,

function generators, flip-flops and pins available on the chip and returns the status to K-Way FM. The status is

true if the constraints are met by the partition segment and false otherwise. Once a chip is found in which the

partition segment fits in, the device part number is assigned to this partition segment.

The K-WAY FM algorithm is invoked repeatedly until either (1) a solution that satisfies the specified constraints

is found, or (2) a user specified limit on number of iterations (MAX_ITER_CNT) is exceeded. The partitioner

returns either a set of partition segments that satisfy the constraints or the best possible solution (if the constraints

could not be met by all the partitions).

179

K-WAY(G, Num_oflpartitions, package_ptr)

begin
Best •(— initialize()

Min-chips •*— calculate_min_chips()

if Min-chips > Num_oLpartitions then

N <— Min_chips

else N <— Nurruof-partitions

Create_initial_partition()

Compute_pins_on_all_partitions()

best_pins <— Pins(Best)

S «- null
continue-part <— TRUE

iteration_cnt <— 1
improve_cnt *— 1

while continue_part = TRUE do

for i = 1 to n—1 do
for j = i+1 to n do

twojway-fm{si, Sj)

end for

end for
curr.pins «— Pins(S)

iteration_cnt <— iteration_cnt + 1

status <— check_chip_constraint(S)

if curr.pins < best_pins V status = TRUE then
improve.cnt <— 1

Best <- S

else
improve_cnt *— improve_cnt + 1

end if
if iteration-cnt = MAX_ITER_CNT V

improve_cnt = MAXJMP
then cont.part *— FALSE

end if
end while

return(Best) /* retrieve best partition */

end

Figure 3: Algorithm for partitioning (Contd.)

180

Check_chip .constraint (S)

begin

status <- TRUE
for all Si £ S do /* segments in partition */

if CLBs(si) > CLBS Vpins(s{) > Ps V

FG{s{) > FG, V FF(si) > FFS

then status +- FALSE

end if
end for
return(status)

end

Figure 4: Algorithm for partitioning (Contd.)

6 Implementation and results

We have developed a vertically integrated system for a top-down design flow for FPGA synthesis with the high level

synthesis system, DSS as the front end and multi-way Fiduccia-Mattheyses algorithm being used for producing

partitions of the input design. We used Xilinx XC4000 as our target FPGA family and used Synopsys design

analyzer and Xilinx XAGT design manager tools, to produce gate-level net-list and programmed bit map files

respectively for FPGA implementation. We developed estimation procedures for estimating the resources needed

by a register level design to be implemented on the FPGA devices. We used these estimates and produced multiple

register level designs using the Multi-Way FM partitioning algorithm.

Tables 3, 4 and 5 show actual and estimated resources needed by the data-path, controller and the complete

design respectively. It can be observed from these tables that the estimated and actual values of flip-flops match

exactly for the data-path and controller since the correct utilizations for the RTL components is provided to the

estimator (in the case of data-path) and the number of flip-flops can be correctly known from the number of states

in the FSM (in the case of controller) . Since the number of flip-flops for the overall design are calculated from

those needed by the data-path and controller, the estimated values of flip-flops needed by the overall design match

exactly with the actual values. On the other hand, we find that estimated and actual values of function generators

in the data-path, controller and overall design differ on an average by about 6% in the case of data-path, 11% in
the case of controller and 9% for the complete design. The number of packed CLBs for the complete design differ

from the estimates due to the discrepancies in the estimates of function generators, which is in turn due to the

FSM synthesis methodology used by the logic synthesis tool and global optimization over function generators .

This deviation from the actual values was found to be about 10% on an average.

Table 6 shows a sample FPGA device selection provided by the user. This has information such as the FPGA

part number, number of chips of each kind available, and the resources available on each chip. Constraints and

corresponding partitions obtained from the partitioner for a number of designs are shown in Table 7. The design

utilizations in this table refer to the estimated values of resources needed by each of the designs. For the first

example, the design fits in only one device and hence the mapping is as shown. In the case of 'DCT' example,

suitable partitions for the devices available cannot be found. Hence there are no partitions available. Instead

the partitining system prompts the user to try with bigger chips. The execution time of the partitioning tool for

10

181

these examples lies between 1.2 sec to 4.0 sec.

When a design is partitioned into multiple design units, the delay on the nets passing from one unit to the other
might be so large that the the frequency of operation of the overall design is drastically reduced. We are currently

extending our partitioning engine to incorporate delay constraints.

Design No. of RTLcomp's

in the data-path

Function generators Flip-flops

Estimate Actual Estimate Actual

TLC 33 47 44 48 48

SS-prod 34 423 374 369 369

DCT 23 157 187 209 209

Find 57 350 384 184 184

Table 3: Estimated and actual values for data-path

Design Num of
states

Control word
length

Function generators Flip-flops

Estimate Actual Estimate Actual

TLC 34 40 109 86 6 6

SS-prod 37 40 143 132 6 6

DCT 38 30 129 99 6 6

Find 76 70 182 199 7 7

Table 4: Estimated and actual values for controller

Design Function generators Flip-flops Packed CLBs

Estimate Actual Estimate Actual Estimate Actual

TLC

SS-prod

DCT
Find

140 .

510

258

479

156

411

312

520

54

375

215

191

54

375

215

191

70

255

129

239

78

205

156

260

Table 5: Estimated and actual values for complete design

11

182

FPGA Part CLBs Function Generators Flip-Flops I/O pins Num available
XC4002 64 128 128 64 1
XC4003 100 200 200 80 2

XC4005 196 392 392 112 1
XC4010 400 800 800 160 0

Table 6: Sample FPGA Device Selection.
Note : 'Number available' is specified by the user. The rest of the data is provided by a configuration file to the

partitioning tool.

Acknowledgments

We thank Narendra Narasimhan, Vinoo Srinivasan and Sriram Govindarajan, University of Cincinnati for their
help and advice. In particular, we thank Vinoo Srinivasan and Sriram Govindarajan for their contribution in the
development of the RTL library targeted for FPGAs.

12

183

Design Design

utilization

FPGA package data

Part(No. available)

Partitions

Chipl Chip2 Chip3 ChiP4

TLC CLBs=70(78),
FGs=140(156),

FFs=54(54)

XC4002 (2)

XC4003 (1)

XC4003
FGs=140(156)

FFs=54(54)

- - -

TLC CLBs=70(78),

FGs=140(156),

FFs=54(54)

XC4003 (2)

XC4004 (1) •

XC4003

FGs=140(156)

FFs=54(54)

- - -

SS-Prod CLBs=255(205),

FGs=510(411),

FFs=375(375)

XC4004 (1)

XC4005 (1)

XC4004

FGs=204(152)

FFs=168(168)

XC4005

FGs=306(259)

FFs=207(207)

- -

SS-Prod CLBs=255(205),

FGs=510(411),

FFs=375(375)

XC4005 (2) XC4005
FGs=204(152)

FFs=168(168)

XC4005

FGs=306(259)

FFs=207(207)

- -

DCT CLBs=129(156),
FGs=258(312),

FFs=215(215)

XC4003 (2)

- - - -

DCT CLBs=129(156),
FGs=258(312),

FFs=215(215)

XC4004 (1)

XC4005 (2)

XC4004

FGs=258(312)

FFs=215(215)

- - -

Find CLBs=239(260)

FGs=479(520)

FFs=191(191)

XC4008 (1) XC4008

FGs=479(520)

FFs=191(191)

- - -

Find CLBs=239(260)

FGs=479(520)

FFs=191(191)

XC4004 (2)

XC4005 (2)

XC4004

FGs=50(57)

FFs=51(51)

XC4004

FGs=178(203)

FFs=23(23)

XC4005

FGs=168(173)

FFs=84(84)

XC4005

FGs=83(87)

FFs=33(33)

Table 7: Constraints and results of Partitioner
Note : The resources are represented as estimated value (actual value).

13

-184

References

[I] Jay Roy, Nand Kumar, Rajiv Dutta and Ranga Vemuri, "DSS : A Distributed High-Level Synthesis System",
IEEE D&T Of Computers, vol. 9, No. 2, June 1992.

[2] Nand Kumar, "High Level VLSI Synthesis For Multichip Designs", PhD Dissertation, University of Cincin-

nati. October 1994.

[3] C.M.Fiduccia and R.M.Mattheyses, "A Linear-Time Heuristic for Improving Network partitions," Proc. 19th

Design Automation Conference, pp. 175-181, June 1982.

[4] Jay Roy, Rajiv Dutta and Ranga Vemuri, "Distributed Design Space exploration For High Level Synthesis

Systems", 29 th ACM/IEEE Design Automation Conference, June 1992.

[5] Daniel D. Gajski, Loganath Ramachandran, "Introduction To High Level Synthesis", IEEE D&T Of Com-

puters, 1994.

[6] A. Sangiovani-Vincentelli, "Synthesis Methods For Field Programmable Gate Arrays",IEEE Proceed ings,

July 1993.

[7] Nam-Sung-Woo, Jaesook Kim, "Efficient Method For Partitioning Circuits for Multiple FPGA Implementa-

tion", 30 th Design Automation Conference, June 1993.

[8] R. Camposano, "From Behavior to Structure: High-Level Synthesis", IEEE Design & Test of Computers, pp.

8-19, Oct. 1990.

[9] R.Rajaraman, D.F.Wong, "Optimum Clustering for Delay Minimization", IEEE Transactions on CAD, Vol

14, pp.1490-1495, Dec 1995.

[10] R. Camposano and W. Wolf, "High-Level VLSI Synthesis", Kluwer Academic Publishers, Boston, 1991.

[II] XILINX XC4000 FPGA data Book, XILINX Inc.,

1994.

[12] XILINX Unified Libraries, XACT Libraries

guide, April 1994.

14

185

APPENDIX!:
Using Declarative Specifications and Case-Based Planning for

System Synthesis*

Perry Alexander, Philip Baraona, and John Penix
Knowledge-Based Software Engineering Lab

Department of Electrical and Computer Engineering
The University of Cincinnati
Cincinnati, OH 45221-0030

Perry.AlexanderOUC.edu,{pbaraona,jpenix}@thor.ece.uc.edu

'Support for this work was provided in part by the Advanced Research Projects Agency and monitored by Wright
Labs under the RASSP Technology Program, contract number F33615-93-C-1316.

186

Keywords: declarative specification, case-based reasoning, system synthesis, two-

tiered specification.

Abstract

Synthesis of pragmatic systems from high-level specifications requires representation and

application of both functional requirements and constraints. This work presents a language

for representing requirements and constraints in VHDL design representations and a prototype

case-based synthesis system, VSPEC is an annotation language for VHDL developed to support

axiomatic representation of requirements for system synthesis. VSPEC descriptions serve as syn-

thesis goals and verification criteria. A prototype case-based synthesis system is also presented

that uses VSPEC requirements as goal statements and descriptions of potential solutions. This

prototype system demonstrates how synthesis can be performed at the systems level and how

constraints can be used to implement a simple concurrent engineering process.

187

1 Introduction

VSPEC is motivated by the need to specify digital system requirements in an implementation in-

dependent fashion. Qualitatively, system requirements specify "what" a system should achieve

without specifying "how" it should be done. Design specifications are developed from requirements

and describe "how" requirements are implemented. Although VHDL [14] supports specification of

specific designs, it does little to support requirements specification. In addition, VHDL does not

support a consistent representation of constraints. Thus, requirements specification in VHDL and

systems level synthesis from VHDL specifications are not practical activities.

Lack of requirement and constraint specification has little effect when designing systems re-

quiring few levels of abstraction. Excellent VHDL synthesis tools exist at the RTL level. However,

there is a growing need for systematic design of very large, abstractly defined systems. With-

out constraint information and precise requirements definition, effective systems engineering and

concurrent engineering are impossible, and automated synthesis is even more difficult than this.

With requirements and constraints specified, some degree of systems level design synthesis

is possible. The case-based synthesis system presented here demonstrates how constraints can be

integrated into an automated design process. System synthesis occurs in a typical, function oriented

manner. However, constraints help rank potential solutions during case retrieval and are verified

at each level of abstraction as the design progresses.

This work concentrates on two subjects: the VSPEC language and a prototype synthesis sys-

tem. First, the VSPEC interface language is presented. The general syntax' and notations used by

VHDL and VSPEC are discussed followed by an example specification. Specific attention is given

to describing how VSPEC represents both functional and non-functional system requirements. Also

discussed is the relationship between algebraic specification and VSPEC with a presentation of syn-

188

thesis goal derivation. Second, a case-based reasoning synthesis process is presented. The basics of

the technique are explained via an annotated example which highlights the role of constraints in

the synthesis process. To conclude, perceived limitations of the synthesis system and our current

research directions are described.

2 Design and Requirements Specification

Three basic constructs are used to specify a design in VHDL: (1) the entity specifies the interface

of a system; (2) the architecture specifies the behavior and/or structure of a system; and (3)

the configuration associates a specific architecture with an entity. The designer specifies

a device interface using the entity construct, develops one or more behavioral or structural de-

scriptions using the architecture and selects a specific implementation for the entity using the

configuration construct.

Each architecture represents a potential design at some level of abstraction. Behavioral spec-

ifications describe the behavior of a solution using an Ada-like programming language. Structural

specifications indicate how components are composed to construct a solution. In both cases, specific

candidate designs are represented.

Representation of system requirements in VHDL is restricted to an operational style - a "pro-

gram" is written that describes an artifact having desired characteristics. Although the operational

style is an excellent means for describing specific designs, it is not well-suited for describing system

requirements for several reasons:

1. It forces representation of a specific design, thus introducing implementational bias.

2. It does not adapt easily to representation of performance constraints.

3. Unimportant characteristics are indistinguishable from required characteristics of the design.

189

4. Users must deal with unnecessary detail.

2.1 VSPEC Requirements Specification

Figure la is an example VHDL entity representing a component that searches a collection of records

for a specific record. Note there is no indication of what the component must accomplish or what

performance constraints exist for it. The result is a black-box view of the component with no

indication of requirements, as shown in Figure lb. An architecture can be developed, but such an

architecture exhibits the negative characteristics described above.

A solution to requirements representation in VHDL is VSPEC, a Larch interface language [8]

developed for VHDL synthesis. The Larch family of specification languages consists of a collection

of application specific interface languages and a common shared language. Each interface language

defines sets of specification primitives containing useful constructs in a target application language.

The shared language serves two purposes. First, it provides a target formal system for translating

interface specifications. Second, it provides a language for writing auxiliary specifications and

handbooks of common components.

The traditional shared language is a first order algebraic language call LSL. In VSPEC, the

primary shared language is REFINE [1], due to its support for transformation and synthesis, its

formal basis, and its potential for execution.

Figure 2a shows the VSPEC representation for the same search as the VHDL entity in Figure la.

The added clauses specify input conditions, output conditions and constraints. Figure 2b shows a

graphical representation of the same information. The VSPEC definition indicates that Vcc must be

less that or equal to 5 and that the area (x x y) must be less than 0.3. No constraints are placed

on heat dissipation (H), clock speed (Clk) or timing.

The specification associated with Figure 2 avoids many of the problems with the operational

190

specification, style. A search routine is specified independently of any implementation by the

ensures clause. The designer need not be concerned with the details of the search algorithm

at the requirements level. Only characteristics necessary for specifying a search are included. Con-

straints are clearly specified in the constrained by clause and do not interfere with the functional

specification.

2.2 The VSPEC entity

All VSPEC annotations affect only the VHDL entity. No changes are made to architecture

structures or any other VHDL structure. VSPEC clauses are grouped into four broad classes: (1)

those that define a devices function; (2) those that define internal state variables; (3) those that

define constraints; and (4) those that relate VHDL data structures to formal representations.

2.2.1 VSPEC Clauses and Logic

The general form of a VSPEC clause is a keyword followed by a logical sentence. The keywords

indicate what requirement the logical sentence specifies. Each logical sentence is written in typed

first-order predicate calculus with extensions to the logic that allow the use of sets and sequences in

specifications. The logic follows the basic syntax of REFINE, the language used for system synthesis,

to support easy translation and some degree of execution.

There are six basic VSPEC clauses:

- requires - specifies sufficient conditions on inputs and state for entity execution

- ensures - specifies necessary conditions on outputs and state following entity execution

- constrained by - specifies non-functional performance constraints

- modifies - specifies what the entity may alter

- based on - associates VHDL data types with REFINE definitions

191

- state - defines a collections of variables that represent the entity's internal state

VSPEC clauses may only access variables and signals defined in an entity port, the state

clause or quantified in a logical expression. VSPEC is strongly typed and all variables must have an

associated type, including those bound by quantifiers. Although REFINE allows type inferencing,

VSPEC does not.

2.2.2 Functional Requirements

The functional requirements of a VSPEC entity are defined using the requires and ensures

clauses. The requires clause specifies a logical expression, I(x), that must be true for the entity

to perform its operation. The ensures clause specifies necessary state conditions, 0(x, z), resulting

from entity execution given a particular input. Formally, any architecture implementing an

entity must obey the condition:

Vx:D»I(x)^0{x,F(x)) (1)

where D is the domain of the transform F(x) is the transformation performed by the architecture.

The requires Clause

The requires clause, J(x), is a logical expression defined over all ports, signals and variables that

may provide input to the transform. I(x) is true when x is a valid input. I(x) is a precondition

for entity execution. When it is true, the entity must produce valid output.

The ensures Clause

The ensures clause, 0(x, z), is a logical expression defined over all ports, signals and variables.

0(x,z) is true when z is a valid output given x as input. 0{x, z) is a postcondition for entity

192

execution and states necessary conditions placed on entity outputs and state variables.

2.2.3 Constraints

Constraints express characteristics an entity must exhibit that are not a part of its function. For

example, heat dissipation constraints frequently affect selection of valid designs, but heat is a side

effect of the technology. It has little to do with the input and output relationships specified in the

requires and ensures clauses.

Although constraints do not affect function, they are critical in hardware system design. In

VSPEC there are two sources of constraint. The first is the constrained by clause that specifies

several performance constraints common in hardware design. The second is the modifies clause

that limits what the entity can alter in performing its function.

The constrained by Clause

The constrained by clause is a conjunction of predefined variables and relations with fixed values.

VSPEC currently supports providing constraint information for heat dissipation, area, clock speed,

power consumption and pin-to-pin timing. To specify constraint, one chooses a constraint type

and uses it in a relation. For example, to specify heat dissipation less than 1 watt and power

consumption less than 10 watts, the logical sentence heat =< 1 and power =< 10 is included in

the constrained by clause.

Timing requires a somewhat more complicated representation. Here one specifies an interval

between two pins, then relates that interval to a constant time. For example, (a<->b) =< 10

specifies that the time between a signal arriving at port a and port b producing a signal must be

less than 10.

193

The modifies Clause

The modifies clause specifies a collection of ports, signals and variables that may be modified by

the entity. The modifies clause indicates what effects and side effects are allowed. Only outputs

may be specified in a modifies clause. Of particular interest is the ability to specify the direction

of buffer type ports.

2.2.4 Abstract Data Types

The semantics of VHDL data types must be defined before reasoning about their properties is

possible. Elemental data types such as integer and bit have definitions loaded as a part of the

VSPEC system. Thus, when using a basic VHDL type, the semantics of that type are present by

default.

The based on Clause

User defined data types such as arrays and records must be defined as a part of the definition process

because they cannot be defined a priori. This is accomplished using the based on predicate. The

logical expression defined in a based on clause defines the semantics of a user defined type. To

support this specification process, VSPEC includes standard Schemas for defining sets, sequences,

arrays and tuples. These Schemas are used in conjunction with parameter morphism to define

associated VHDL types specific to user needs.

2.2.5 System State

The notion of system state is typically not supported directly by axiomatic specification techniques.

A computation unit is defined by a transform that relates inputs to outputs. Thus, to include state

in a specification it must be specified as both an input and an output of the transform. However,

194

specification of state-based systems is natural to hardware designers and suggesting that state

representation be an input to the VHDL entity is not natural. Using the two-tiered specification

approach, state can be managed by: (a) supporting the definition of local state variables; and (b)

using state maintaining features of port signals. Instead of specifying a function that maps input

signals defined in the port definition to outputs in the same port definition, specify a function that

maps inputs and state maintaining objects to outputs and state maintaining objects.

The state clause

The state clause is a collection of variables that store state within a VSPEC entity. Like VHDL

variables and signals, these variables maintain their values from one invocation of the entity to

the next. All state variables are defined locally and are not visible outside the entity.

Ports

variables defined an entity's port definition may maintain their state. Variables of type buffer

may be inputs or outputs and are not re-initialized unless a signal of some type is driving them.

Variables of type out and inout also maintain their state.

2.3 Generic Architectures in VSPEC

VSPEC supports representation of high level, abstract architectures using the architecture con-

struct from VHDL. No modifications or annotations are necessary - simply specify entity structures

accessed by the architecture using VSPEC.

Figure 3 represents a two component architecture for solving the element search problem. The

search entity is identical to the one in Figure 2a which serves as the starting point for designing

the system. The next step is creating a VHDL architecture that solves the problem specified by

10

195

the VSPEC entity. In this example, architecture structure solves this problem by breaking it up

into two sub-components: one which sorts the input and one which retrieves the proper element

from the sorted list. This architecture was generated using the synthesis technique discussed in

Section 3. The result of breaking the problem into two sub-components is two new VSPEC entities

that describe the subcomponents. Notice that the combination of the functional and performance

constraints of each sub-component meet the constraints specified by the search entity. The next

step in the design process is to generate VHDL architectures for each of these sub-components. The

behavior architecture is an example of a solution for the bin_search entity.

2.4 VSPEC and Algebraic Specification

Any VSPEC definition can be transformed into a formal definition. The form of this definition is

an algebraic specification based on an extension of domain theories as defined in CYPRESS [18] and

KIDS [20, 19]. The basic form of a domain theory is a tuple consisting of the function domain (D),

range (Ä), input precondition (I(x : D)) and output postcondition (0{x : D,z : R)) commonly

referred to as a DRIO model. The DRIO model for any VSPEC entity can be constructed using

the following rules:

D = d\ x d2 x • • • x dn where df. is the sort (defined by the based on clause) representing the type

associated with an in, inout, or buffer ports, or a state variable

R = n x T2 x ... x rm where r,- is the sort representing the type associated with an out, inout,

or buffer port listed in the modifies clause, or a state variable

I(x : D) = Iv(x : D) where Iv(x : D) is the logical sentence defined by the requires clause

0(x : D,z : R) = Ov{x : D,z : R) where Ov(x : D,z : R) is the logical sentence defined by the

ensures clause

11

196

Additionally, constraints must be defined as a part of the algebraic statement. The simplest

means of accomplishing this is to include predicates representing constraints in the output function

of the DRIO. However, constraints are not functional. Specifying constraints in their own clause is

an attempt to separate constraint from function. Additionally, constraints in their current form do

not depend on variables defined in the entity1. Thus, constraints are added to the DRIO model

through a specification extension that adds logical representations of constraints. Effectively, the

DRIO model becomes a DRIOC model.

C(ci : Ci,..., Cn : Cn) = Cv(ci : d,..., cn : C„) where ck is a constraint variable such as heat or

area, Ck is a sort associated with a constraint variable and Cv is the logical expression defined

in the constrained by clause

With addition of constraints, the goal of the design activity becomes finding an architecture

that performs the transform F : D ->• R such that:

Vz :£./(*) ^O0r,F(z)) A Ctci,...,^) (2)

Thus, the goal of the synthesis activity is generation of a transform mapping the current state

and inputs into the next state and outputs such that the output condition and constraints are

satisfied.

3 System Synthesis

The case-based reasoning model used by the synthesis system is based on the standard approach of

retrieval, adaptation, and evaluation. In the following sections, each of these activities is described.

*A more complex constraint model could certainly include variables and signals. Our current constraint model
does not allow this.

12

197

The similarity metric, features and feature types are described followed by a description of the

three stage retrieval process. Adaptation via rule application and by replacing case components is

described next followed by a brief description of the evaluation process.2.

Given a VSPEC specification and its DRIOC model equivalent, planning techniques apply to

system synthesis. The general goal of planning is to accumulate a partially ordered bag of actions

that achieve the end result. This goal is analogous to the design of general systems where one is

searching for a collection of interconnected devices for solving a problem. Effectively, I and O define

pre- and post-conditions for a component. In planning terms, this is identical to the description of a

goal or plan action. Consider the goal of system synthesis described in Equation 1. This is exactly

the goal of a planning system - given a pre-condition, find a sequence of actions that necessarily

imply a desired post-condition.

Although any number of planning techniques apply, case-based planning is discussed here. A

method derived from the ASP-II[4] analysis planner and refined in the BENTON[2, 3] is applied.

The ASP-II planner used case-based reasoning to synthesize simulation actions given characteristics

described in a before clause (pre-condition) and an after clause (post-condition). ASP-II supports

the replacement of failed actions in a plan using a technique called adaptation by re-planning.

Adaptation by re-planning works by inferring a goal from the state change caused by a plan

action. The system state is known before the action is executed from the post-condition of the

preceding action and the system state after execution from the pre-condition of the following action.

Thus, if an action or sequence of actions failed the goal of the action could be retrieved and used

as a goal for a new planning process.

In our case-based synthesis system, VHDL components are analogous to plan actions and VHDL

2For a more formal description of the retrieval and adaptation processes, please refer to the BENTON case-based
reasoning component [3]

13

198

architecture structures are analogous to composite plans. The DRIOC form of VSPEC require-

ments expresses exactly what a plan action does - I(X) expresses a precondition and 0(x, z)

expresses a post condition. Thus, VSPEC requirements can be used to generate goals for synthesis

processes to replace components analogously to plan actions in ASP-II.

3.1 Example Problem

To demonstrate the case-based reasoning technique, synthesis of a VHDL component implementing

a search system will be used as an example. Figure 4 represents the VSPEC requirements for the

searching component. This requirements specification states that a list of elements and a key

are input with the element associated with the key output. The requires clause states that no

preconditions exist on the input set. (Note that the entity port definition assures inputs are of

the correct type.) The ensures clause specifies that if an element in the input array has a key

value associated with k, that element is returned by the function.

The VSPEC entity is parsed and the result is a DRIOC specification of the following form:

D = seqence(element) x integer
R = element
I(x) = true
0(x, z) = Ve : element • output = e <=> e 6 input A k = key(e)
C = power < 10

3.2 Cases

Each stored case is a triple consisting of a problem description, feature set, and potential solution.

The problem description is the DRIOC translation of the VSPEC requirements, the feature set is

domain specific and derived from the DRIOC, and the solution is a VHDL specification fragment

annotated with VSPEC. satisfying the problem description. The case-base is a set of cases and

associated indexes used to retrieve cases efficiently.

14

199

3.3 Retrieval and Similarity

When presented with a new problem, the case-based synthesis process begins its problem solving

activity by retrieving one or more similar cases from the case-base. Retrieval is a three step process

of: (a) generating a feature set for the new problem; (b) retrieving functionally correct solutions;

and (c) determining the most similar functionally correct solution.

3.3.1 Features and Feature Types

A feature type represents information common to features representing the same characteristic. A

set of feature types exists for each case-base. Each feature type has a unique name and describes

how to compare features of that type, the relative importance of the feature, and how to generate

the feature from a problem description.

The following is the feature type definition for the input-types feature. The comparison

function is bag-equal, its relative weight is 1.0, and generate-input-types constructs features

of this type from problems.

<'input-types, 'bag-equal, 1.0, 'generate-input-types>

Sets of features describe problems and facilitate retrieval and comparison of problems. A feature

is an attribute value pair where the attribute names a unique feature type and the value is the

feature value. A feature is legal if and only if it names a known type. An example of a legal

input-types feature for an entity accepting an integer and a sequence of integers as inputs would

be:

<'input-types, [''integer'',''seq(element) ' ']>

Features and feature types are defined based on the VSPEC descriptions. A VSPEC description

is a collection of logical expressions and argument list definitions when converted. The goal of

15

200

the synthesis problem is finding a component whose behaviof and performance meet the VSPEC

requirements. In case-based reasoning terms, this translates to finding a component whose VSPEC

description is similar to problem requirements and adapting that solution to the specific problem.

Because VSPEC is formal, the DRIOC elements could be used as features and logical implication

used as a matching function - when corresponding elements of two DRIOC descriptions are logically

equivalent, they match.

The logical equivalence approach to comparing VSPEC descriptions is appealing because feature

generation is trivial, the features are general to any domain using VSPEC descriptions, and the

comparison is formal. However, logical inference is computationally impractical when considering

large case-bases.

The solution is defining features for the specific domain of application, generating those features

from VSPEC and using these features for comparison purposes. Generality and formal comparison

are lost with this method. However, the efficiency gain from using simple comparisons makes this

system far more pragmatic.

A collection of feature types for the DSP domain is currently under development for this system.

Following is a short list of some feature types used in further examples:

input-types sequence of input types output-types sequence of output types
heat heat dissipation power power consumption
fft Computes FFT ordered(x) x is ordered
permute (x,y) x is a permutation of y search is a search system

3.3.2 Feature Generation

When a new problem is presented to the synthesis system, a set of features is generated. The

feature generation function from each feature type is applied to the new problem and the resulting

features comprise the problem's feature set. Feature generation functions are represented as REPINE

functions. The set of generation functions are maintained in a list and applied to each new problem

16

201

in a predetermined order to avoid the need for conflict resolution.

The following is the function that generates the input-types feature. It returns an attribute

value pair consisting of the input-types feature name and the value stored in the domain slot of

the problem description.

function generate-input-types (p : problem) : feature =
<'input-types,p.domain>;

Following is a subset of features generated for the search problem.

{<input-types, [sequence(element),integer]>,
<output-types, [element]>,
<power, < <=,10»,
<search, true>,
<fft, false>,
<ordered, false>,

The first two features represent D and R and indicate what the retrieved case must input and

output. The comparison function for each is bag equality indicating the arity and input and output

types must match.

Other features are defined based on I and O. No features are generated from I because it

is always true. Effectively, there are no input preconditions and the component should work on

all inputs of the correct type. The output postcondition, O, does provide information about the

desired results of applying this component by defining a search routine.

Finally, features are generated from C. The constrained by clause must be a conjunction

of simple relations. Each of these relations forms a feature. The type of each feature names the

constraint and the relation and value form a pair specifying the value. Simple interval arithmetic

is used to compare specific feature values.

17

202

3.3.3 Problem Similarity

In a case-based reasoning system, problem similarity indicates the level of confidence that two

problems share a solution. This similarity measure is based on two premises. First, the similarity is

proportional to the number of common characteristics with matching values. Second, the premise

that similarity is proportional to the amount of information involved in the comparison.

The similarity measure implements these premises as raw similarity and the possible match

ratio respectively. Raw similarity is a measure of how many shared features match. Two features

match if they are of the same type and their values are equal based on the feature type's comparison

function. The possible match ratio is a measure of how many feature types are shared by the two

feature sets. A feature or feature type is shared by two features sets if there is a feature of that

type in both sets. Given two sets of features, similarity is the product of the raw similarity value

and the possible match ratio.

Raw Similarity

Given two feature sets, raw similarity is the ratio of the sum of weights from matching features to

the sum of weights from shared features. Qualitatively, raw similarity determines the weighted per-

centage of features that match. Formally, raw similarity is defined as the sum weights of matching

features divided by the sum of the weights of all shared feature types.

A DontCare value in a feature's value slot represents a situation when a feature is present,

but its exact value does not matter. More specifically, when the feature contains no useful in-

formation for determining problem similarity or is not known. The DontCare feature allows the

system to distinguish between situations where a feature does not match and when a feature match

determination cannot be made.

When a comparison between features of the same type involves a DontCare value, a match

18

203

always occurs. However, to indicate the inexact nature of the match, the weight used to determine

similarity is decreased. In this system, the match is degraded by multiplying the weight from the

feature type description by 0.95. Thus, the weight used in the sum of comparison results for raw

similarity is 0.95 of its original value. The weight used for calculating the total possible weight is

the original weight value.

An example of how the DontCare values are used arises when retrieving objects where con-

straints are not specified. It may be that specific values for a particular constraint are not known

because constituent components are not yet described in enough detail. Given a choice between

such a component and a component where the constraint is know to be violated, the potential

solution should be preferred. By using the DontCare feature value instead of a mismatch value or

leaving the feature out, the possible solution is preferred over the solution known to be incorrect.

If a solution were known to be correct, it would be preferred over the potential solution.

The Possible Match Ratio

The second component of the similarity value, the possible match ratio, is the ratio of the number of

shared features to the total number of features defined for the case being considered. The objective

of the possible match ratio is to implement specificity in the similarity metric. Given that two cases

have equivalent raw similarity values with respect to the current problem, the possible match ratio

will prefer the case matching the highest percentage of features, thus involving more information

in the comparison.

In addition to preferring more information, the possible match ratio allows loose definition of

solution categories. Consider two problems, one described by features specifying input precondi-

tions and output post conditions, and the other described by features specifying representation

characteristics. The first feature set describes a problem best solved using a data transform while

19

204

the second a problem best solved using a data type. It is conceivable that these two feature sets

could share a small number of feature types. If those features match, the raw similarity metric has

no means of determining that most features cannot be compared and would return a deceptively

high similarity value. The possible match ratio differentiates between these two solution categories

because few feature types are shared by the feature sets.

Similarity

The final similarity value is the product of the raw similarity value and the possible match ratio.

Table 1 shows the results of comparing two sets of features with the problem's feature set. Note

that the second set match is lower due to mismatch of a power consumption feature.

3.3.4 Functional Similarity

The simplest approach to retrieval is calculating a similarity value for each element of the case-based

with respect to the problem and choosing the most similar case. The result is a table much like

Table 1 extended for the entire case-base. This is not a practical approach for large case-bases due

to the complexity of similarity calculation. Thus, solutions matching critical features are retrieved

and then ordered using the complete similarity metric.

To accomplish this, the retrieval system maintains indexes for features representing functional

characteristics. These features are referred to as important features. Following generation of of the

problem feature set, important features are extracted. Indexes statically maintained by the retrieval

system are used to retrieve a set of cases whose important features match problem features exactly.

Static indexes are created when a case is added to the case-base. Feature values are used as

retrieval keys and cases with features that match a particular value can be retrieved directly without

a similarity calculation. Important features include input-types, output-types and some other

20

205

features computed from functional requirements. In general, features computed from constraints are

not important features, but serve to choose a best solution from all those satisfying the functional

requirements.

All features are used to determine final similarity between the initially retrieved set and the

problem. Because all potential cases match with respect to important features, features representing

other constraints determine the functionally similar case representing is the best solution. The case

returned by the retrieval process is the case from the initially retrieved set whose similarity with

the problem is maximal.

The two stage retrieval process results from two observations. First, the belief that design is a

process of finding a set of functionally correct solutions, then using problem constraints to select

from them an optimal solution. Important features indicate the primary function of the artifact.

The remaining features describe the constraints the solution exists under. Second, initial retrieval

is achieved using statically maintained indexes, without the cost of calculating similarity. Similarity

is calculated over this subset of the original case-base. This dramatically reduces retrieval cost with

respect to a brute force approach that calculates similarity for every element in the case-base.

Consider the feature sets generated for linear search and batch sequential search shown in

Figure 5. Using only important features, these two cases are identical. They both search arrays of

elements and return the indicated element if found. Thus, the initial retrieval would return both,

but eliminate cases for sorting, FFTs, and cases where range and domain are not matches.

Although the two solutions are functionally equivalent, the power feature representing a con-

straint differs. In the linear search entity the power constraint from the original specification

is violated while in the batch sequential entity the power is not known. (See Table 1 for exact

similarity calculations.) Thus, the similarity of the linear search case is lessened and the batch

sequential option is preferred. The power constraint is not verifiable, but unlike the linear search

21

206

option, it is not known that the constraint is violated. This is an example of using the DontCare

feature value to indicate a situation between a perfect match and a mismatch.

The batch sequential search architecture returned is the same as the architecture shown in

Figure 3. Note that a behavioral specification of the bin_search entity exists, however no spec-

ification for the sort entity exists aside from the VSPEC description. This represents a complete

specification of the problem and can be viewed as a solution. However, it is possible to repeat the

process and attempt to synthesize a specific component for the sort description. This is achieved

during adaptation by repeating the synthesis process using requirements from the sort description.

3.4 Adaptation

The most similar case found by the retrieval process is modified to fit the current problem by

the adaptation process. Adaptation employs two independent methods. The first is application

of adaptation rules. The second is replacement of case parts by generating a sub-problem and

recursively calling the case-based reasoner.

3.4.1 Rule-Based Adaptation

An adaptation rule is a REFINE transform. The antecedent is a predicate accepting three arguments:

the problem being solved, the problem solved by the case, and the specification fragment being

adapted. The consequent is a REPINE predicate accepting the same arguments that implements

the change to the specification fragment. A list of adaptation rules is maintained by the system.

Each rule is evaluated during the first stage of adaptation. Conflict resolution is achieved using a

static ordering based entirely on the order rules exist in the rule-base.

VHDL and VSPEC components are stored using an object-based abstract syntax tree common

to REFINE parsing activities [1]. This representation makes application of adaptation rules much

22

207

easier because the object model is manipulated rather than plain text. The advantage is that

adaptation rules need not parse text to perform their operations. Retrieving the source code from

the object model simply requires calling a single print routine, thus there is no loss of solution

generality.

An example of a frequently used adaptation rule does variable substitution. This function

gathers all identifiers and references from an entity structure and applies a transformation to

them. In a semantically correct abstract syntax tree, each variable has a definition and several

references. To change the name of a variable, the name must be changed at the definition point

and each reference point. This transformation is called on each node in the abstract syntax tree. If

a node is an identifier reference, it checks the identifier name and changes those matching the old

variable name to the new variable name. Similarly, it finds the identifier definition and changes its

name to the new name. Without the abstract syntax tree, the source VSPEC would require lexical

and syntactic analysis to perform this operation.

function subst-variable (the-entity: entity,old-name: symbol,new-name: symbol)
let (idents = entity-port(the-entity),

idents-refs = descendants-of-class(the-entity,'ident-ref))
ref in idents-refs &
ident-name(ref) = old-name ft

—>
ident-name(ref) = new-name;
ref in idents ft
ident-name(ref) = old-name

—>
ident-name(ref) = new-name

3.4.2 Sub-Problem Based Adaptation

The second adaptation method is case element replacement. This involves defining a function

or goal associated with the fragment and using the internal environment defined by the case to

constrain possible solutions [6].

23

208

Case fragment replacement is used to replace a portion of a structural specification architecture.

Because a structural architecture is a collection of components, identification of a case fragment

for replacement is identifying an appropriate component. To define a function for the case fragment,

the reasoning process uses the difference between the system state before and after the execution

of the component action. The reasoning process assumes that the component caused the difference

intentionally. Thus, the difference defines what must be the goal of the component. Constraints

defined by preconditions and the external environment together defined constraints on the new

synthesis problem. The difference between the system state before and after component execution

is obtained from either the VSPEC representation of the component, or from VSPEC defining outputs

of systems providing input to the component and the preconditions of components receiving output.

The result is a new problem whose solution can replace the original.3

Replacing components also may occur when instantiating a general architecture. Recall that

entity structures referenced by an architecture may be defined only using VSPEC and need not

have a VHDL implementation. Thus, the requirements of the component are expressed without the

specifics of the implementation. The VSPEC is transformed into a problem description and a VHDL

component satisfying the requirements results.

As an example of case component replacement, consider synthesis of an architecture for the

sort entity. The DRIOC form of the VSPEC is as follows:

D = seqence(element) x integer

R = element

I(x) = true

0(x, z) = Ve : element • output = e<^eG input Ak = key(e)

C = power < 10

3For a detailed discussion of this adaptation scheme, please see [4]

24

209

The feature set associated with this problem is similar to the feature set for the original search

problem, but no constraints are specified and feature values are changed appropriately.

{<input-types, [sequence(element)] >,
<output-types, [sequence(element)]>,
<power, DontCare>,
<search, false>,
<fft, false>,
<ordered, true>,
<permutation, true>,

The retrieval activity here is identical to retrieval of the batch sequential architecture and the

discussion will not be repeated. Any appropriate sorting architecture may be retrieved given the

current set of features. For this example, assume a quicksort entity is retrieved described by the

VSPEC entity shown in Figure 6.

The resulting VHDL description is the batch sequential architecture combined with the quicksort

architectureThis represents a new solution at a lower level of abstraction. Before it is accepted

as a solution, the new system must be evaluated with respect to constraints.

3.5 Evaluation

Following synthesis of the potential solution, a case-based reasoner attempts to evaluate a solution

to determine its fitness. The evaluation process in this case-based reasoning system exclusively

involves determining if the proposed solution meets specified constraints.

Recall that the constrained by clause defines constraints the system must satisfy. These

constraints are translated into features for the retrieval process. If the solution is monolithic,

constraint satisfaction is a simple comparison of C(cy... cn) from the problem description and

the proposed solution. However, when the solution is a collection of components, more complex

constraint verification must be applied.

25

210

Constraint verification is achieved by specifying constraint behavior and transforming that be-

havioral description into REFINE theories. Given the constraints from the high level specification

and a set of constraints from component constraints, the REFINE theories determine if the compo-

sition of component constraints continue to meet the higher level constraints. Theories currently

exist in this system to evaluate heat dissipation, power consumption, clock speed, pin-to-pin timing,

and area. By checking performance constraints in the earliest stages of synthesis, such issues are

managed concurrently with the synthesis activities.

With the batch sequential search system completed, constraints on the subcomponents of the

batch sequential search algorithm are now known. The theory of power consumption this system

uses states that the total power used by a device is equal to the sum of the power used by the device's

components. Instantiated for this problem, the total power used by bin_search and quicksort

must be less than 10 watts. The constraints on the components say that they consume no more

than 4 watts and no more than 5 watts respectively. Using interval arithmetic, the sum is no more

than 9 watts and the 10 watt constraint is met. If a constraint violation is discovered, the offending

potential solution is discarded. The reasoning process is repeated in an attempt to find a better

solution. Alternative approaches include simply reporting the constraint violation or involving the

user in the decision process.

Evaluation of constraints occurs both when retrieving and evaluating potential solutions. At

each stage of the synthesis activity, non-functional requirements are evaluated concurrently with

functional requirements. Thus implementing a simple concurrent engineering synthesis process.

26

211

4 Limitations

Early experimentation indicates this synthesis approach is effective using small case-bases in rea-

sonably restricted domains. Currently, this approach is being extended to solve co-design problems

and the initial case-based is being extended. Several limitations, although not fatal, have been

identified.

4.1 Case-Base Construction

The greatest potential limitation to this approach is case-base construction. The system cannot use

a component that is not defined in its case-base, implying that a large case-base must be developed,

or individual case-bases must be developed for each domain. This requires identification of a core

set of components with VSPEC annotations.

VHDL libraries currently exist and are being aggressively constructed in the DSP domain. How-

ever, these libraries are not annotated with VSPEC, thus forcing back annotation by hand or using

an automated approach. Hand annotation is time consuming and difficult. Automated annotation

is not practical at this time.

An alternative approach is implementation of other synthesis techniques that generate inno-

vative solutions and use these approaches to augment the case-base. Currently this approach is

being pursued through integration with the KIDS software synthesis environment and transforma-

tion based synthesis techniques. New solutions are generated when necessary and old solutions

are re-used when possible. It should be noted that although they do extend the case-base, other

techniques are also limited by their synthesis knowledge.

27

21?

4.2 Features and Feature Generation

Each synthesis domain requires definition of feature types and feature generation functions. Once

cases are identified, they must be indexed and stored in the case-base. As with case-based con-

struction, a universal set of features can be defined, or individual feature sets can be developed for

each domain. The second solution is the obvious choice given the trade-off between computational

complexity and brittleness caused by domain specific features. Without exploiting some domain

specific information, retrieval become computationally prohibitive.

4.3 Solution Correctness

Currently there is no guarantee that any given solution is correct. If a VHDL solution is synthe-

■ sized, simulation is available for some limited correctness evaluation. An approach currently being

developed is to use a theorem proving approach on the VSPEC description. The limitations of such

an approach as a retrieval technique were presented earlier. However, once a solution is found,

the problem is reduced to checking one solution. This still requires pragmatic, efficient theorem

proving techniques to ultimately be practical.

5 Related Work

As VSPEC is a Larch interface language for VHDL it borrows from the construction of other interface

languages. Specifically, VSPEC is styled after the LM3 Larch interface language for Modula-3 [10].

Odyssey Research Associates is currently developing an alternative Larch interface language for

VHDL [9]. This language does not support representation of constraints other than time and is

targeted for formal analysis rather than synthesis. They are attempting to generate a formal

semantics for VHDL using LSL for proving correctness. ORA's interface language also differs in its

28

213

implementation of time. An absolute time based temporal logic is used in specifying the function

of an entity. Thus one can specify that a predicate becomes true at a specific time using the

notation "P(x)@i". The VSPEC notation specifies time intervals as constraints independent of

system function.

Another attempt to annotate VHDL is VAL [5]. VAL annotates all aspects of the VHDL design. All

signals in the namespace of the VHDL representation are in the namespace of the VAL annotation.

Thus, VAL annotates specific VHDL designs rather than represent requirements. ORA's interface

language is similar in this respect, but does support separate requirements definitions.

Although VHDL is a hardware synthesis language, synthesis of VHDL designs is a software syn-

thesis activity. Viewing software synthesis as a planning activity was proposed in the KBSA ef-

fort [16, 22, 17] and used heavily in the BENTON [2] system. Both systems use plans to represent

and control software synthesis activities. In this system, plans are not explicitly used and represent

only the structure of solutions. Other attempts at case-based software design include CEASAR [7],

analogical reuse [11, 12], and work in derivational analogy [13]. Some also view reuse work by

Prieto-Diaz [15] as case-based reasoning, however it is not a heuristic approach and involves no

adaptation of final solutions.

6 Future Work

Current VSPEC research involves pursuing domain specific support for specification activities and

support for formal synthesis. An important aspect of any Larch language is its associated handbook.

A handbook is simply a collection of reusable theories defined in the shared language. Handbook

theories represent commonly used structures, algorithms and characteristics as well as domain spe-

cific information. For VHDL theories to represent standard VHDL types, low level logic functions and

29

214

conversion routines are being implemented. In addition, libraries to support specifications involving

signal attributes such as event, stable, and delay are under development. Theories for pin-to-

pin timing, heat dissipation, power consumption, area and clock speed have been implemented to

support constraint checking during the design process.

The isomorphic relationship between VSPEC and algebraic specifications is being used to exploit

work in formal synthesis, specifically, developing morphisms between algorithms [21]. This involves

development and implementation of theories useful in constructing multicomponent systems such

as the batch sequential search algorithm appearing earlier in this paper.

Finally, formal evaluation of specifications and solutions is being explored. Although it may

be impractical to use formal inference in the retrieval process, once a solution is found it is a

practical verification tool. Given VSPEC descriptions of both the problem and solution, various

levels of satisfaction may be evaluated. Logical equivalence is the ideal comparison, however, logical

implication may be acceptable. Even more interesting is the use of modal logics and antecedent

discovery to correct incomplete specifications or restrict solutions.

7 Acknowledgments

Support for this work was provided in part by the Advanced Research Projects Agency and moni-

tored by Wright Labs under the RASSP Technology Program, contract number F33615-93-C-1316.

The authors wish to thank Wright Labs and ARPA for their continuing support and direction.

The authors also wish to thank Hal Carter, Philip Wilsey, Ranga Vemuri and Paul Bailor for their

invaluable comments on (and criticism of) the VSPEC language. A final word of thanks to the

reviewers for their comments and suggestions.

30

215

References

[1] L. Abraido-Fandino. An overview of refine 2.0. In Proceedings of the Second International

Symposium on Knowledge Engineering, Madrid, Spain, April 1987.

[2] P. Alexander. BENTON: A Multi-Agent System for Larch Specification Generation. In The 5th

International Conference on Soßware Engineering and Knowledge Engineering, pages 125-133,

San Francisco, CA, June 1993. Knowledge Systems Institute.

[3] P. Alexander. Combining transformational and derivational analogy in Larch specification

generation. In Proceedings of The 6th International Conference on Software Engineering and

Knowledge Engineering, pages 131-138, Riga, Latvia, June 1994. Knowledge Systems Institute.

[4] P. Alexander and C. Tsatsoulis. ASP-II: An Experiment in Combining Case-Based and Skeletal

Planning. International Journal of Expert Systems: Research and Applications, 4(2):221-247,

1991.

[5] L. Augustin, D. Luckham, B. Gennart, Y. Huh, and A. Stanculescu. Hardware Design and

Simulation in VAL/VHDL. Kluwer Academic Publishers, Boston, MA, 1991.

[6] Ralph Barletta and William Mark. Breaking Cases Into Pieces. In AAAI Case-Based Reasoning

Workshop, pages 12-16, Minneapolis-St. Paul, 1988. AAAI.

[7] G. Fouque and S. Matwin. CEASAR: a system for CAse basEd SoftwAre Reuse. In Proceedings:

7th Annual Knowledge-Based Software Engineering Conference, pages 90-99, McLean, VA,

September 1992. IEEE Computer Society Press.

[8] J. Guttag and J. Horning. Larch: Languages and tools for formal specification. Texts and

Monographs in Computer Science. Springer-Verlag, New York, NY, 1993.

31

216

[9] D. Jamsek and M. Bickford. Formal Verification of VHDL Models. Technical Report RL-TR-

94-3, Rome Laboratory, Grifnss Air Force Base, NY, March 1994.

[10] K. Jones. LM3: A Larch Interface Language for Modula-3. Technical Report 72, DEC Systems

Research Center, Palo Alto, CA, 1991.

[11] N. Maiden and A. Sutcliffe. Analogical Matching for Specification Reuse. In Proceedings: 6th

Annual Knowledge-Based Soßware Engineering Conference, pages 101-112, GrifEss AFB, NY,

September 1991. IEEE Computer Society Press.

[12] S. Meggendorfer and P. Manhart. A Knowledge and Deduction Based Software Retrieval

Tool. In 6th Annual Knowledge-Based Software Engineering Conference, pages 126-137. IEEE

Computer Society Press, 1991.

[13] K. Miriyala and M. Harandi. The Role of Analogy in Specification Derivation. In Proceedings:

6th Annual Knowledge-Based Software Engineering Conference, pages 113-125, GrifEss AFB,

NY, September 1991. IEEE Computer Society Press.

[14] D. Perry. VHDL. McGraw-Hill, New York, NY, 1st edition, 1991.

[15] R. Prieto-Diaz. Implementing Faceted Classification for Software Reuse. Communications of

the ACM, 34(5):88-97, 1991.

[16] C. Rich. A Formal Representation for Plans in the Programmer's Apprentice. In 7th Interna-

tional Joint Conference on Artificial Intelligence. Morgan Kaufman, 1981.

[17] C. Rich and Y. A. Feldman. Seven Layers of Knowledge Representation and Reasoning in

Support of Software Development. IEEE Transactions on Software Engineering, 18(6):451-

469, 1992.

32

217

[18] D. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial Intelligence,

27(l):43-96, Sept. 1985.

[19] D. Smith. Algorithm Theories and Design Tactics. Science of Computer Programming, 14:305-

321, 1990.

[20] D. Smith. KIDS: A Semiautomatic Program Development System. IEEE Transactions on

Software Engineering, 16(9):1024-1043, Sept. 1990.

[21] D. Smith. Classification approach to design. Technical Report KES.U.93.4, Kestrel Institute,

3260 Hillview Avenue, Palo Alto, CA, November 1993.

[22] R. Waters. The Programmer's Apprentice: A Session with KBEmacs. IEEE Transactions on

Software Engineering, 11(11):1,296-1,320, 1985.

33

218

entity search is

port (input: in array of element;

k: in keytype;

output: out element);

end search;

element
array

key

search

???
_

: *■ element

a) b)

Figure 1: A VHDL entity describing a record search.

34

219

entity search is

port (input: in array of element;

k: in keytype;

output: out element);
modifies output;

requires true;

ensures

output = e <=> key(e)=k and

e in input
constrained by

power =< 5 and

area =< .3

end search;

H

search
_ i

element ~
y F(ln) «■rriw

key — » ' , x n

t t
Vcc Clk

Time

element

a) b)

Figure 2: A VSPEC entity describing a record search.

35

220

Feature Name Problem Linear Search Batch Sequential
goal entity entity entity
input-types [integer,seq(element)] [integer,seq(element)] [integer,seq(element)]
output-types [element] [element] [element]
fft false false false
ordered(z) DontCare DontCare DontCare
permute(x,z) DontCare DontCare DontCare
search true true true
heat DontCare DontCare DontCare
power «=,10> DontCare «=,11>
area DontCare DontCare DontCare
Possible Match 1.0 1.0 1.0
Raw Similarity 1.0 0.978 0.975
Similarity 1.0 0.978 0.975

Table 1: Table showing a subset of features generated for the search problem and 2 potential
solutions. The bottom rows indicate calculated similarity values. Assume all weights are 1.

36

221

entity search is

port (input: in array of element;

k: in keytype;

output: out element);

modifies output;

requires true;

ensures

output = e <=> key(e)=k and

e in input
constrained by

power =< 5 and

area =< .3

end search;

architecture structure of search is
component sorter

port (input: in array of element;

output: out array of element);
component bin_search

port (input: in array of element;

key: in keytype;

value: out element);

signal sorted_array: array of element;
begin

sort_instant: sorter

port map (input=>in_array;
output=>sorted_array);

search_instant: bin_search
port map (input=>sorted_array;

k=>in_key;

value=>out_value);
end bat-seq;

entity bin_search is

port (input: buffer array of element;
k: in keytype;

value: out element);

modifies out;

requires sorted(input);

ensures

(fa e:element)

output = e <=> key(e)=k and

e in input;
constrained by

power <= 3 and

area <= .2;

end bin_search;

architecture behavior of bin_search is
begin

pi: process

— VHDL representation of a

— binary search over ordered

— arrays

end process;

end behavior;

entity sort is

port (input: in array of element;

output: out array of element);
modifies output;

ensures bag(input) = bag(output) and

sorted(output);
constrained by

power <= 2 and

area <= .1;
end sort;

Figure 3: VSPEC representation of a search architecture using a batch sequential approach. The
original list is sorted and a binary search finds the desired object from the resulting list.

37

222

entity search is
port (list: in array of element;

k: in integer;
output: out element);

modifies output;
requires true;
ensures

(fa e:element)
(output = e) <=>

(e in input and
k = key(e));

constrained by
power <= 10;

end example;

Figure 4: VSPEC requirements for a searching component.

{<input-types, [sequence(element),integer] > , {<input-types, [sequence(element).integer]>,
<output-types, [element]>, <output-types, [element]>,
<power, DontCare>, <power, <=,11»,
<search, true>, <search, true>,
<fft, false>, <fft, false>,
<ordered, false>, <ordered, false>,
...} ...}

a) Features from batch sequential search b) Features from linear search

Figure 5: Features from linear and batch sequential search returned by the retrieval algorithm.

entity quicksort is architecture behavior of quicksort is
port (input : in array of element; begin

output : out array of element) pi: process
modifies output; — VHDL description of a
requires true; — quicksort algorithm
ensures end process;

bag(input)=bag(output) and end behavior;
sorted(output);

constrained by
power <= 5;

end quicksort;

Figure 6: quicksort entity with VSPEC annotations and behavioral VHDL description.

38

223

APPENDIX M:
Extending VHDL to the Systems Level*

Perry Alexander and Phillip B araona
Department of Electrical and Computer Engineering

and Computer Science
PO Box 210030

The University of Cincinnati
Cincinnati, OH 45221-0030

{alex,pbaraona}@ececs.uc.edu
www.ececs.uc.edu/~kbse

Abstract

Systems engineering is the process of looking at many
facets of an emerging design. A systems engineer is re-
quired to examine and reconcile many information sources
when making high level design decisions. Although VHDL
is an excellent digital system description language, it lacks
flexibility to address all systems level issues. Digital system
behavior and structure are effectively handled, but other
facets are not. VSPEC represents one attempt to model other
facets in the VHDL framework. It adds functional require^
ment and performance constraint modeling to the VHDL-
based design process. This paper first describes VSPEC and
its interaction with VHDL. It argues that VSPEC is an excel-
lent first step towards a systems level description language.
However, other facets are needed to model complete sys-
tems. A language structure for representing these facets is
proposed and a potential source for a semantic definition is
identified.

1 Introduction

Systems level design is characterized by the need to deal
with heterogeneity during the design process. Heterogene-
ity arises from two sources: (I) modeling components using
different computational models; and (ii) modeling differ-
ent component and system facets. Different system com-
ponents are best modeled using different basic semantic
models. Digital electronic, analog electronic, optical, and
MEMS components all have different underlying mathe-
matical domain models. Like heterogeneous components,

* Support for this work was provided in part by the Advanced Research
Projects Agency and monitored by Wright Labs under the RASSP Tech-
nology Program, contract number F33615-93-C-1316

multiple facets of the same component require different un-
derlying semantic models. Electromagnetic, analog, digital
and constraint facets again have different underlying math-
ematical domain models. Further, different models may be
used for the same facet under different circumstances.

lb address the systems level design process, VHDL must
be extended to include: (i) multiple modeling paradigms
for different component facets; (ii) multiple modeling
paradigms for different component domains; and (iii) a
means for moving information between system represen-
tations. Multiple modeling paradigms supports integrated
modeling. Moving information between system repre-
sentations supports using multiple semantic models with-
out forcing a single model. Interestingly, VHDL provides
syntactic support for multiple modeling paradigms. The
entity/architecture model supports defining both
structural and behavioral models for me same component.
This basic architecture has been used to extend VHDL to the
analog domain and to define constraint and requirements
models.

Moving information between semantic models presents
a more difficult problem Effectively, the VHDL semantics
must be extended. Goguen's model of institutions [6] can
be used as a basis for such modeling. Using institutions, se-
mantic domains are denned as categories and functors used
to define when information from one domain is valid in an-
other.

This paper presents existing efforts to move VHDL to the
systems level. First, a brief overview of VSPEC is presented.
VSPEC is an interface specification language for VHDL that
represents an initial attempt to model multiple component
facets at the requirements level. Second, the model asso-
ciating an entity with one or more architecture is
extended to provide a multi-faceted model. As an example,
the VSPEC requirements and constraint models are repre-

224

seated. The paper concludes by describing open semantic
issues and problems that must be addressed.

2 VSPEC-A First Step

VHDL provides users with a means for modeling both the
behavior and structure of a digital system. It provides users
with an operational language for describing the behavior of
a component. This language subset, referred to as behav-
ioral VHDL, allows users to describe data transforms and
control structures for components using a programming lan-
guage style syntax, VHDL also provides users with a declar-
ative language for describing the structure of a system This
language, referred to as structural VHDL, allows users to de-
scribe interconnections between components using a simple
net list-based module interconnect language.

Using behavioral and structural architectures of
the same component allows VHDL users to model two facets
of components and systems: function and structure. Thus,
a user might provide a high level, black-box behavioral de-
scription and use that description as a basis for refinement
into a structural system decomposition. Such activities are
common in top-down design processes making these facets
and their interaction quite useful to systems designers.

Behavioral and structure VHDL share a common
simulation-based semantics that allows information from
one facet to be visible in the other. More specifically, the
results of simulating structural and behavioral representa-
tions of a component can be directly compared. Thus, de-
signers are able to evaluate the results of design iterations
by simulating and comparing results.

Although VHDL has excellent operational specification
capabilities, their application during the design process is
limited. One limitation noted m bur research activities is at
the abstract requirements specification level Specifically:
(i) VHDL'S operational semantics are not suitable for ab-
stract functional requirements; and (ii) VHDL provides no
means for describing performance requirements. These two
information classes form important information facets use-
ful in the design process, VSPEC is an initial attempt to
address these facets in the context of VHDL.

2.1 An Example

VSPEC uses a modified axiomatic specification technique
for modeling a component's function and performance re-
quirements A pre- and post-condition are defined to in-
dicate: (i) what must be true in the current state; and (ii)
what must be true in the next state. This pre- and post-
condition follow the traditional axiomatic semantics pre-
sented by Hoare [9] and are implemented using a Larch
Interface Language approach [8]. This axiomatic specifi-
cation is augmented with ah activation condition indicating

what circumstances cause the component to activate. The
activation condition is needed because of the concurrent na-
ture of VHDL components in contrast to the serial nature of
software components.

The axiomatic specification approach is further modified
to describe performance requirements. Such performance
requirements are modeled using a simple declarative se-
mantics to express relations over constraint variables. They
are effectively invariants with respect to the axiomatic func-
tional requirements.

To understand how VSPEC defines requirements and con-
straints, an example of a simple search component is pre-
sented in Figure 1. This component accepts an array of el-
ements and a key and returns the array element associated
with that key. Changing the value of either the key input or
the array to be searched causes the component to activate.

package search_types is
type E is mutable;
type K is mutable;
type E_array is array (integer range O) of E;

end search_types;

use work.search_types;
entity search is port

(input: in E_array ;
Jc: in K;
output: out E);

/'■■ includes KeyToElement (E, K) ;
includes Area, Power, Frequency;
modifies output;
sensitive to
k'event or input'event;

requires true;
ensures forall e: E

((output'post = e) iff
(key(e)=k
and e £ input));

: : constrained by
area < (3 urn * 5 um)
and power < 10 mW
and clock_frequency < 50 MHz;

end search;

KeyToElement(E,K)
introduces

key: E —> K

trait

Figure 1. An example component defining re-
quirements for a simple search component.

2.2 Functional Requirements

The basic specification model used for VSPEC functional
requirements is a state machine. Figure 3 represents in-

225

H

search

element
array

key

i

y

i

F(ln)
 ^- :

 *• 1 r. X

t \
Vcc Clk »-

element

Time T

Figure 2. A graphical representation of
VSPEC information representation.

formation defined by a VSPEC component. Using the ax-
iomatic style, a state machine is specified. Pre-conditions
and post-conditions define the output and next state func-
tions while entity ports and VSPEC state variables define
component state.

entity E i

input n X p. F(x,s) _
—&*

Z |
ports

L- s •*

output
ports

Figure 3. State-based model of functional
specification.

Functional requirements are modeled using the activa-
tion condition, pre-condition and post-condition. These
are specified in the sensitive to, requires, and
ensures clauses,respectively. The requires clausede-
fines a pre-condition that must be true in the current state for
the component to execute correctly. The ensures clause
defines a post-condition the component must make true in
the next state given the pre-condition is true in the current
state. Given that x is the collection of entity ports and
VSPEC state variables providing input or state and z is the
collection of entityports and VSPEC state variables pro-
viding output or next state, the relationship defined by the
requires and ensures clauses can be defined as:

Wvrequires(äf) =>■ 3z • er\sures(x,z) (1)

The axiomatic specifications define the data transforma-
tion performed by the component. These specifications de-
fine requirements on how the component transforms data
by defining relations between inputs, current state and out-
puts. Specifically, any implementation of these require-
ments, F{x), must provide a witness for z that satisifies the
requirements. Skolemizing Equation 1 results in the follow-
ing correctness condition for the data transformation:

V£- requires(:r) =>• ensures{x, F(z)) (2)

: Although simple, the importance of this relationship is
the connection it provides between the requirements defined
by VSPEC and the execution of a VHDL implementation.
Given only these requirements, any VHDL implementation
of F(x) is a correctimpiementaticm. Thus, the requirements
facet is connected semantically to the behavioral or struc-
tural facet. Further, the requirements facet could be associ-
ated with a test facet or other facet defined for a component.

The ensures and requires clauses of the example
search component (Figure 1) define the following ax-
iomatic requirements:

rÜinput: Earray, k : K ■ true =$> Ve : £, -^output: E ■ (3)
output = e & key(e) = k A e € input

Simplifying the implication via implication elmination
yields:

fNinput: Earray, k:K,e:E, -Boutput: E- (4)
output = e o- key{e) = k A e € input

The requirement defined in Equation 4 states that an out-
put of this component is correct if and only if: (i) the output
is in the input set; and (ii) the key associated with the out-
put is equal to the input key. Any component meeting this
requirement is potentially a solution to «he defined problem
Note that using the declarative representation, requirements
are stated directly rather than identifying a specific candi-
date solution.

The activation condition defined inthesensit i ve t o
clause defines when a component becomes active. Like the
pre-condition, the activation condition must be true for the
component to function. If the pre-condition is false, the
component's behavior is undefined. In contrast, if the activi-
ation condition is false the component maintains its current
state. The activiation condition models events that cause the
component to perform its task.

226

When components are interconnected, activation condi-
tions model interaction between components. Activation
conditions are defined over the same symbol set as pre-
conditions. They monitor inputs and state to determine
when the component should perform its data transform.
When inputs are connected to outputs from other compo-
nents or inputs from outside the system control is com-
municated between components. Activation conditions are
modeled using a process algebra. Process algebras are de-
signed specifically to model reactive systems and suit the
semantic needs of activation conditions nicely. Specifically,
VSPEC activatcion conditions are modeled using CSP [10].

Each VSPEC entity is modeled as a CSP process. The
alphabet of each process' is the set of system states where
its associated activation condition is true. By definition, the
CSP process ignores any symbol not in its alphabet. Thus,
any state where the component is not active is ignored by
the component.

Given an activation condition A(x), the set of states
where 4 is active is defined as *A = {s : S | A(s)}. Using
i&A the process P associated with a VSPEC component is
defined loosely as:1

P8 = e : «^ -> Ps> (5)
where s and s' are the current and next states and satisfy

the axiomatic requirements. Briefly, the notation indicates
that a process, P in state s waits for an event e from * A-
Because *A only contains states where the activation con-
dition is true, P will effectively ignore all other states. For
any e in *^, a process P in state s' results. If it is known
that some function F satisfies the axiomatic requirements,
then the previous equation can be rewritten as:

Ps = e : *, mp (6)

Note that even within VSPEC 's functional modeling com-
ponent, two facets exist. Specifically, the axiomatic model
of data transform and the process algebra model of control.
In the semantics of VSPEC, these two facets communicate
by sharing a common definition in the Larch Shared Lan-
guage [8].

The sesitive to clause from the search compo-
nent (Figure 1) defines the following activation condition:

k'event V input'event (7)
Remwmg the syntactic sugar gives the following predi-

cate:

Vft : K;input: Earray ■ event(k) V eveht(input) (8)
1 Component semantics are substantially more complex than this simple

example. The complexity adds nothing to this paper. ^Interested readers
should reference specific VSPEC papers listed in the bibliography [4,3]

The attribute event is actually a predicate that is true
when the value of its assocated symbol has changed from
the last state. Thus, the activation condition is true when
either the key or search database changes values.

2.3 Architectures

An architecture is a collection of interacting compo-
nents, VHDL provides structural descriptions for refining
component and process interconnection, VSPEC uses the
same structural descriptions to connect entities annotated
with VSPEC definitions. A VSPEC structural description is
exactly analogous to structural architectures used in tradi-
tional VHDL. Figure 4 shows a VSPEC component archi-
tecture for a search architecture. This architecture speci-
fies a sort component that prepares input for a binary search
component. Figure 5 defines the VSPEC requirements for
the components used in the architecture.

use work.search^types;
architecture structure of search is

component sort
port (list_.in: in E_array;

: list_out: out E_array);
end component;
component bin_search
port (l.ist_in: in E_array;

k: in K;
e: out E);

end component;
signal x: E_array;

begin
.Cl:;;sort port map (input,x);
C2::bin_search port map (x,k, output);

end:structure;

Figure 4. A candidate architecture for the
search example.

VSPEC'S process algebra semantics supports defining
bisimulation relationships [14] between single component
requirements and VSPEC component architectures. A
VSPEC architecture is a decomposition of a system into a
collection of interconnected components where the require-
ments of each component are known but an implementa-
tion has not yet been defined. A VSPEC architecture rep-
resents a decompsition step in a top down design process.
Bisimulation relationships define when a VSPEC architec-
ture exhibits behavioral equivalence with its associated re-
quirements; e.g. when they look the same at their interfaces.
Thus, using the axiomatic semantics of VSPEC with its pro-
cess algebra control semantics a structural facet (the vspec

227

architecture) can be related with a requirements facet (the
component specification).

use work. search__types;
entity sort is port

(list_in: in array of E;
list_out: out array of E);

sensitive to list_in' event;
requires true;
ensures

ordered(list_out'post) and
perumuation(list_in,list_out'post) ;

end bin_search;

use work.search_types;
entity bin_search is port

(list_in: in array of E;
k: in K; e: out E);
sensitive to

list_in'event or k'event;
requires ordered(list_in);
ensures V f: E

output'post' = f iff
key(f)=k
and f 6 input;

end bin search;

Figure 5. Component specifications for can»
didate search architecture.

2.4 Performance Constraints

Performance requirements are modeled using relations
defined in the constrained; by clause. These relations
define constraints over a collection of variables defining
constraint types. The component is required to meet those
constraints at all times in every state. Thus, constraints
behave much like invariants with respect to the axiomatic
functional requirements.

The semantics of constraints can be defined in terms of a
component's state. Simply, the constraint predicate must be
true for all states:

W: S •<?(?): (9)

The constrained by clause from the search ex-
ample (Figure 1) defines the following constraint predicate:

Vs : S • area <= (3y,rn * hum)
Apower <= 10mW

Aclockfrequency <—50MH

(10)

(11)

In VSPEC, physical types behave like VHDL physical
types. Thus, these relations define constraints on area,
power consumption and clock speed.

Constraints present special problems when interacting
with other facets. Requirements, behavior and structural
facets interact in relatively intuitiye ways. Providing proper
semantics defines clean relationships between facets. Con-
straints do not share this characteristic. Constraint variables
(e;g. heat and area) have no analog in any other facet Fur-
ther, it is difficult if not impossible to model the relationship
between a functional requirement and a constraint Con-
straints haveneither a simulation or true axiomatic semantic
making relationships difficult to define.

3 VHDL, VSPEC and Systems Level Design

VDHL provides two facets for modeling digital
systems: (i) behavioral; and (ii) structural. The
entity/architecture pair structure provides means
for associating multiple facets to the same interface. How-
ever, VHDL provides only a simulation semantics for rep-
resenting systems. This limits VHDL'S impact in multi-
facetted modeling at the systems level.

VSPEC adds new facets and new modeling paradigms for
those facets: The initial objectives for designing VSPEC
were to support very high level synthesis. Specifically, ca-
pabilities for specifying: (i) declarative functional require-
ments; and (ii) performance constraints were initially de-
veloped. Activiation conditions and architectures followed

: las the need to represent component decomposition became
apparent.

VSPEC demonstrates the effectiveness of multi-facetted
modeling. By adding modeling capabilities that do not re-
quire operational semantics, support is provided for mod-
eling requirements declaratively. Because requirements de-
fine "what" rather than "how", declarative semantics make
sense for requirements modeling. Further, a declarative se-
mantics extended to both performance constraints and func-
tion.

Looking back at systems level language requirements
and examining VSPEC and VHDL reveals that several sys-
tems level modeling requirements are met. Both VHDL and
VSPEC provide support for multiple modeling paradigms
for different component facets, VHDL provides behav-
ioral and structural support using operational semantics.
VSPEC provides fucntional requirements and performance
constraint support using a declarative semantics, VHDL and
VSPEC also support modeling different components in the
same system using different computational models. The se-
mantics for achieving this are still somewhat arcane, but
they do exist and are usable. Finally, a limited means for
moving information between facets exists, VHDL uses a sin-
gle, common operational semantics while VSPEC uses a sin-

228

gle, common declarative semantics. Bisimulation provides
a link between VHDL and the functional aspects of VSPEC.
Links to and from the constraint aspects of VSPEC are not
as well defined.

4 Moving VHDL to Systems Level Design

Moving VHDL to the systems level involves taking the
concepts demonstrated in VSPEC and: (i) extending them
to the general case; and (ii) providing consistent language
support. This section describes one possible method to ac-
complish these goals. This description represents initial
thoughts on this topic: none of the VHDL extensions de-
scribed in this section have been implemented.

Extending the facet concept to more general cases means
providing a general structure for supporting facets, VSPEC

currently annotates the entity description because it de-
fines interface requirements. Thus, the interface is the most
logical place for the descrption. The component interface is
not the best place for describing all requirements.

VHDL does provide a structure useful for as-
signing multiple models to a component. The
entity/architecture model allows multiple models
to be denned for a given interface. To extend this, language
support must be provided for different facets of an entity.
Specifically, the architecture is replaced by a facet
structure that serves a similar, more general purpose,
figure 6 shows several facets defined for a single entity.

Each facet defined in Figure 6 uses its own computa-
tional model. The model is selected based on appropri-
ateness for the information being represented and language
constructs are provided appropriately. As new facets are
identified, new facets are added to the systems level lan-
guage using this common syntactic support The hetero-
geneous nature of facets makes mem substantially different
than VHDL architectures all of which share ä common sim-
ulation based semantics.

5 A Potential Semantic Basis

The need to move information between facets is what
defines systems engineering activities. How those hetero-
geneous models interacts profoundly influences work at
the systems leveL Thus, it is important to begin model-
ing the interaction of facets. The syntax described in the
previous section that extends VHDL to the systems level
is rather standard. However, mixing computational mod-
els within the same language environment presents interest-
ing research challenges. Reconciling information between
computational models may be the most difficult of these
challenges.

The approach taken by both VHDL and VSPEC is to de-
fine a common semantic basis for all language constructs.

VHDL provides a simulation semantics for each system
component, VSPEC provides a declarative, axiomatic se-
mantics for each construct. However, problems tend to
arise when migrating information between the two com-
putational models. Modeling inherently operational infor-
mation declaratively (or vice-versa) simply serves to over
complicate the entire model.

Forcing all system component and facet representations
into a single semantic model may cause designers to sac-
rifice useful design abstractions. For example, the abstrac-
tions used to model discrete time systems must be sacrificed
if analog time is the basic underlying semantics. The same
holds true for any single underlying semantic.

The solution to this problem is modeling how facets in-
teract without resorting to a single model. Information
should be visible among facets when and where appropri-
ate. It should remain in the facet where it is modeled and
be moved directly into the interacting facet without moving
through a universal representation. Figure 7 shows graphi-
cally the information flow into a unified representation ver-
sus information flow between facets.

System facets and their interactions can be viewed theo-
retically as institutions [6]. Although it is not proposed that
facets be implemented as institutions, using this abstraction
potentially aids understanding and modeling information.

Each system facet is a category where: (i) objects are
model instances in that facet; and (ii) arrows are homomor-
phisms betweem model instances. To satisfy these require-
ments, a facet must be a formal system consisting of a lan-
guage, formal semantics and inference system. Homomor-
phism is classically denned as theory containment. Specif-
ically, if a homomorphism exists between two objects, then
the first is contained in the theory of the second. These char-
acteristics result trivally from category theory definitions.

A category [15] C is defined as:

1. A collection of objects

2. A collection of morphisms (represented by arrows)

3. Operations or declarations assigning each arrow / a
domain object, d, and co-domain object c. Given / :
o-+i specifies arrow /, dom f = a and cod / = b.

4. A composition operator (o) assigning to each pair of
arrows / and g such that cod / = dorn g a composite
arrow gof : dom/ -> cod g stastifying the associative
law:

ho(gof) = (hog)of

5. An identity arrow id A : A -> A satisfying the identity
law:

idAof = fAfoidA = f

229

— The basic component interface

— remains the same

entity search is port

(input: in array of E;

k: in K;

output: out E);

end. search;

— A requirements facet containing an

— axiomatic specification

facet requirements of component is axiomatic
begin

includes KeyToElement(E, K) ;

modifies output;

sensitive to

k'event or input'event

requires true;

ensures V e: E

output'post = e iff

key (e)=k

and e £ input;

end requirements;

— A requirements facet containing a
— performance constraint specification

facet constraints of component is peformance
begin

size < 3 um * 5 um;
power < 10 mW;

clock < 50 MHz;

end constraints;

— A behavioral facet containing behavioral
— VHDL

facet function of component is behavioral

variable i: integer;
begin;;: :■::;:::

for i;in input'range loop

end loop;

end function;

—An architecture facet containing structural
— VHDL

facet architecture of component is structural
component sort

port;: {list-in: in array of E;

list_out: out array of E);

end-component;

component bin.search

::port (list-in: in array of E;

k: in K;

■e: out E);
end:: component;

signal x: array of E;
begin

Cl: sort port map (input,x);

C2: bin_search port map (x,k,e);

end architecture;

Figure 6. Some potential facets defined using a VHDL-like systems representation.

Homomorphisms between objects within a category rep-
resent changes to design instances where correctness is
maintained. Relationships between information domains
can be represented by treating information domains as cat-
egories and interrelationships as functors.

An institution [6] X is defined as:

1. A category Sign of signatures.

2. A functor Sen: Sign -» Set giving the set of sentences
over a given Signatare.

3. A functor Mod : Sign ->• Catop giving thevariety of
models of a given signature

4. A satisfaction relation |=C Mod{i:) x Sen(T,) for
each Sin Sign

Such that for every morphism ip : S -+ S' in Sign, the
satisfaction condition:

J|:::;: m' f= ip(e) ■«■ ip(m') f= e ?

holds for each TO' in Mod(S') and each e in Sen(S)
What the ins defines is a link between theorems

in one category with theorems in another. The institution

enforces a condition that links facets and forces information
between them to remain consistent Thus, if a theorem in
one facet changes, appropriate theorems in a linked facet
must change to keep information consistent between facets.

Instititions provide the necessary formal framework for
a semantic definition. The various facets must be modeled
formally as well as the functors regulating interactions. Fur-
ther, institutions will not form the basis of an efficient im-
plementation. Thus, language structures must be provided
that link facets. These language structures can use the insti-
tution as their formal basis while providing a more efficient
link between two different facets. For example, an institu-
tion would be developed that links a requirements facet to
a structural facet for a given entity. One possible basis of
this institution could be the bisimulation condition defined
between VSPEC requirements and VSPEC architectures. Ob-
viously, there is still much work to be done before these
concepts can be used to formally describe the relationship
between two different facets of a component However, the
institution model appears to be a promising approach.

230

Behavioral Thermal
Facet Facet

\ /
Requirements Unified Constraints

Facet *" Representation"* Facet

/ \
Structural Power

Facet Facet

Behavioral
Facet

Thermal
Facet

Requirements
Facet

Constrai
Facet

Structural
Facet

Power
Facet

Figure 7. Information flow into a universal representation vs. direct flow between facets.

6. Related Work

Odyssey Research Associates (ORA) is developing
Larch/VHDL, an alternative Larch interface language for
VHDL [11]. Larch/VHDL is targeted for formal analysis
of a VHDL description and ORA is defining a formal se-
mantics for VHDL using LSL. The LSL representations are
used in a traditional theorem prover (Penelope, developed
for a similar annotation language for Ada [7]) to verify sys-
tem correctness. Larch/VHDL annotations are added to a
specific VHDL description to represent proof obhgations for
the verification process. This differs from VSPEC'S purpose
of representing requirements and design decisions at high
levels of abstraction. Further, Larch/VHDL provides only
a declarative representation of the operational VHDL se-
mantics. However, the interface language defined by ORA
does provide a means for defining requirements much like
VSPEC'S axiomatic component.

Augustin and Luckham's VAL [2] is another attempt to
annotate VHDL for requirements modeling. The purpose
of a VAL annotation to a VHDL descriptioh is to document
the design for verification. VAL provides mechanisms for
mapping a behavioral description to a structural description.
Two VAL/VHDL descriptions of a design can be transformed \
into a self-checking VHDL program that is simulated to ver-
ify that the two descriptions implement the same function.
This is once again slightly different than VSPEC'S purpose
of high level requirements representation. Further, VAL'S
semantics is operational in that it can be trasformed into
VHDL assertions.

The abstract architecture representation capabilities of
VSPEC are also fairly closely related to several architecture
description languages that have been^^ developed to describe
software architectures [5]. Some of the more well known
arc^tectur#description are UhiCon [16], WRIGHT [1] and
RAPIDE [12, 13]. Each of these languages allow the def-
inition of components and connectors to define a software
architecture. This is very similar to the VHDL notion of a
stractural architecture.

Allen and Garlan's WRIGHT language is of particular in-

terest when discussing VSPEC because a WRIGHT compo-
nent is defined with a variant of CSP. Unlike VSPEC'S use
of CSP to define component synchronization, WRIGHT uses
CSP to define component behavior as well. A WRIGHT de-
scription consists of a collection of components interacting
via instances of connector types. WRIGHT'S CSP descrip-
tions define the sequence of events a component or connec-
tor participates in.

7 Conclusions

^ T^ paper presented preliminary thoughts on the exten-
sion of VHDL to the systems level. First, the systems level
design problem was defined as sharing information between
system facets, VHDL supports limited multi-facet model-
ing, but does not provide sufficient flexibility to be called
a systems-level design language. Second, VSPEC was pre-
sented as a first step towards systems level design, VSPEC
adds information facets to VHDL that support modeling re-
quirements, performance constraints and abstract architec-
tures. Finally, initial syntactic and semantic extensions to
VHDL were presented that add a facet construct to the
language and model its semantics using institutions. We be-
lieve these extensions would be a first step towards making
VHDL more suitable for systems level design.

References

[1] R. Allen and D. Garlan. Formalizing Architectural Connec-
tion. In Proc. Sixteenth International Conference on Soft-
ware Engineering, pages 71-80, May 1994.

[2] L. Augustin, D. Luckham, B. Gennart, Y. Huh, and A. Stan-
culescu. Hardware Design and Simulation in VAL/VHDL.
Kluwer Academic Publishers, Boston, MA, 1991.

[3] P. Baraona and P. Alexander. Representing abstract archi-
tectures with axiomatic specifications and activation con-
ditions. In IEEE Engineering of Computer Based Systems
Symposium (ECBS-97), March 1997.

[4] P. Baraona, J. Penix, and P. Alexander. VSPEC: A Declar-
ative Requirements Specification Language for VHDL. In
J.-M. Berge, 0. Levia, and J. Rouillard, editors, High-Level

231

System Modeling: Specification Languages, volume 3 of
Current Issues in Electronic Modeling, chapter 3, pages 51-
75. Kluwer Academic Publishers, Boston, MA, 1995.

[5] D. Garlan and M. Shaw. An Introduction to Software Archi-
tecture. In V. Ambriola and G. Tortora, editors, Advances in
Software Eng. and Knowledge Eng., volume 2, pages 1-39.
World Scientific, New York, 1993.

[6] J. A. Goguen and R. M. Burstall. Introducing institutions.
Lecture Notes in Computer Science, 164:221-255,1984.

[7] D. Guaspari. Penelope: An Ada Verification System. In
ProceedingsofTri-Ada '89, pages 216-224, Pittsburgh, PA,
October 1989.

[8] J. V. Guttag and J. J. Horning. Larch: Languages and Tools
for Formal Specification. Springer-Verlag, New York, NY,
1993.

[9] C. A. R. Hoare. An Axiomatic Basis for Computer Program--;:
ming. Communications of the ACM, 12:576-580,583,1969.

[10] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, 1985.

[11] D. Jamsek and M. Bickford. Formal Verification of VHDL
Models. Technical Report RL-TR-94-3, Rome Laboratory,
Griffiss Air Force Base, NY, March 1994.

[12] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and Analysis of System Architec-
ture Using Rapide. IEEE Transactions on Software Engi-
neering, 21(4):315-355, April 1995.

[13] D. Luckham and J. Vera. An Event-Based Architecture Def-
inition Language. IEEE Transactions on Software Engineer-
ing, 21(9):717-734, September 1995.

[14] R. Milner. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, New York, NY,
1989.

[15] B. Pierce. Basic Category Theory for Computer Scientists.
The MTT Press, 1991.

[16] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and
G. Zelesnik. Abstractions for Software Architecture and
Tools to Support Them. IEEE Transactions on Software En-
gineering, 21(4):314-335, April 1995.

232

APPENDIX N:
Representing Abstract Architectures with Axiomatic Specifications

and Activation Conditions*

Phillip Baraona, Perry Alexander
Department of Electrical k Computer Engineering and Computer Science

PO Box 210030 The University of Cincinnati
Cincinnati, OH

{pbaraona,alex}@ececs.uc.edu

Abstract

Evaluating architectural design decisions early in the
design process is critical for cost effective design. For-
mal analysis can provide such evaluation if architec-
tures are defined in a formal way. This paper describes
how VSPEC can be used to formally define an archi-
tecture during requirements specification, VSPEC is a
Larch interface language for VHDL that annotates VHDL
entities using the axiomatic style provided by Larch in-
terface languages. Using VHDL 'S structural definition
support, entities described in this manner are connected
to form architectural descriptions. Activation condi-
tions over component inputs define when that compo-
nent must perform its transform. In this paper, we
formally define a VSPEC component's state and how
component states interact in an architecture. A rudi-
mentary formal semantics for component activation is
presented and used to define two potential satisfaction
criterion.

1. Introduction

Architectural design decisions made early in a sys-
tem's design profoundly affect overall design quality.
Unfortunately, architecture decisions are rarely evalu-
ated until late in the design process. Simulation-based
design languages such as VHDL [17] do not allow evalua-
tion until complete models exist. Such models include
not only architectural decisions, but also component
design decisions. For large systems, simulatable mod-
els appear late in the design driving up the cost of error

* Support for this work was provided in part by the Advanced
Research Projects Agency and monitored by Wright Labs under
the RASSP Technology Program, contract number F33615-93-
C-1316.

correction.

A solution to late architecture evaluation is formal
analysis of abstract architectures at the requirements
level. An abstract architecture is an inter-connected
collection of components where the requirements of
each component are specified without defining their im-
plementation. Thus, an abstract architecture describes
a class of solutions rather than a single instance. In-
stead of waiting for a completed system including de-
sign detail, formally described abstract architectures
can be evaluated when architecture decisions are made.
VSPEC [3], a Larch interface language [8] for VHDL [17],
is a requirements description language that includes
formal architecture definition support.

: VSPEC describes the requirements of digital system
components using the canonical Larch approach and
interconnects component descriptions using VHDL'S

structural definition features. Each VHDL entity is
annotated with a pre- and post-condition to indi-
cate the component's functional requirements. VSPEC-
annotated entities are connected together using a VHDL

structural architecture to form an abstract architec-
ture. The VHDL architecture indicates interconnec-
tion in the traditional manner, but the requirements
of each component are defined instead of their imple-
mentations. An activation condition can be defined
to explicitly indicate when a component should exe-
cute. Finally, VSPEC allows a designer to describe non-
functional requirements critical in selecting from alter-
native architecture implementations.

This paper describes VSPEC, concentrating on the
language's facilities for describing abstract architec-
tures. Section 2 provides a brief summary of the VSPEC

language. Section 3 describes VSPEC abstract architec-
tures, including a definition of the VSPEC state model
and a description of how a process algebra (CSP [9]) is
used to provide a semantics for the VSPEC activation

235

condition. Section 4 discusses how these semantics can
be used to verify that an abstract architecture satisfies
the specification of the entity. The paper concludes
with a discussion of related work.

2. A Brief Summary of VSPEC

VSPEC is a requirements specification language for
digital systems. As a requirements specification lan-
guage, it is used very early in the design process to
describe "what" a digital system must do. The oper-
ational style of VHDL makes VHDL alone ill-suited for
requirements specification. It forces a designer to de-
scribe a system by defining a specific design artifact
that describes "how" the system behaves. Using VHDL :
as a requirements specification language forces a de-
signer to deal with unnecessary detail at an early point
in the design process.

In contrast to VHDL's operational style, VSPEC al-
lows a designer to declaratively describe a component.
A VSPEC description of a sorting component is shown
in Figure 1. As with most other Larch interface lan-
guages, the requires and ensures clauses are used
to state the pre- and post-conditions of the compo-
nent. The sort component does has a pre-condition
of true which means it will function correctly for any
set of inputs. The post-condition states that the out-
put contains all the same elements as the input (ile.;
permutation (output'post, input)) and the output
is in order. Any implementation of a sorting compo-
nent that makes this post-condition true in the next
state is a valid implementation of these requirements.
More generatlly, given a component with requires
predicate I(St) and ensures predicate 0(Si, St'post),
f(St) is an implementation of the requirements if the
following condition holds:

V5-/(5i)=^Ö(5i,/(5i)) (1)

In addition to allowing a designer to describe "what"
a component does, VSPEC also addresses another short-
coming of VHDL: it allows a designer to specify perfor-
mance constraints in a consistent fashion. The VSPEC
constrained by clause is used for this purpose. As
shown in Figure 1, this clause defines relations over
constraint variables. Currently, the defined constraint
variables include power consumption, layout area (ex-
pressed as a bounding box), heat dissipation, clock
speed and pin to pin timing. Constraint theories writ-
ten in LSL define each constraint type. Users may define
their own constraints and theories if desired. _

The state clause contains a list of variable decla-
rations that define the internal state of a component.

These variables maintain state information that may
not be recorded by the values of the component's ports.
A state clause is not needed in the sorting component
specification in Figure 1, but an example of this clause
can be found in the Move Machine description [3].

The modifies clause lists variables, ports and sig-
nals whose values may be changed by the entity. Most
other Larch interface languages contain a modifies
clause, and the definition of VSPEC modifies clause
is very similar to the definitions found in these lan-
guages [4, 7, 12]. The includes clause is used to in-
clude Larch Shared Language definitions in a VSPEC
description. The sorts and operators defined in the
LSL trait named by the includes clause can be used
in the VSPEC definition. In this example, the SortOps
trait defines two predicates: permutation and sorted.

The sensitive to clause plays the same role in a
VSPEC definition that sensitivity lists and wait state-
ments play in ä VHDL description. It defines when
a component is active. The sensitive to clause
for sort in Figure 1 states that the entity activates
(and sorts its input) whenever the input changes.
The sensitive to clause contains a predicate indi-
cating when an entity should begin executing. The
next section contains a more precise semantics for the
sensitive to predicate.

3. Abstract Architectures

:l;: VHDL structural architectures composed of VSPEC
annotated components specify abstract architectures.
The VHDL architecture remains unchanged indicat-
ing component instantiation and connections. How-
ever- the configuration does not assign an en-
tity/architecture pair to each component instance in

I ;the architecture. Instead, the configuration states that
:ieach component references an entity with an architec-
ture called VSPEC. This signifies that at the current
point in the design, the requirements of this component
are known (via the VSPEC description) but no imple-
mentation has been defined.

Consider the VSPEC description of a find compo-
nent shown in Figure 2a. The output of find is the
element from the input array with the same key as
the k input. This requirement is represented by find's
ensures clause. One possible way to meet this require-
ment is to connect the output of a sorting component to
a binary search component as shown in Figure 3. The
specification for sort is the same as the one in Sec-
tion 2 while the bin_search specification is shown in
Figure 2b. The only difference between this structural
description of find and a VHDL structural description
of find is the configuration specifies that the VSPEC

234

entity sort is port

(input: in integer_array;

output: out integer_array);

includes SortOps;

modifies output;

sensitive to input'event;

requires true;

ensures

permutation(output'post, input) and

sorted(output'post);

constrained by

power <= 5 mW and size <= 3 urn * 5 urn

and heat <= 10 mW and clock <= 50 MHz
and input<->output <= 5 Ms;

end sort;

H

sort

A

y
X

input

V

t t
Vcc Clk >-

output

Time

Figure 1. VSPEC description of a sorting component.

descriptions of sort and bin_search should be used
instead of a specific architecture for these two entities.
This configuration describes an abstract architecture
for the find component. Any implementation satisfy-
ing the VSPEC requirements of sort and bin_search
may be associated with these entity definitions. The
abstract architecture for find defines a class of solu-
tions with a common structure.

Although a VHDL architecture referencing VSPEC

definitions defines components and interconnections,
additional information must be added to specify when
the VSPEC components activate. In traditional sequen-
tial programming, a language construct "executes" fol-
lowing termination of the construct preceding it. For
correct execution, a construct's pre-condition must be
satisfied when the preceding construct terminates. In
hardware systems, components exist simultaneously
and behave as independent processes. No predefined
execution order exists so there is no means of implicitly
determining when a component's pre-condition should
hold.

VHDL provides sensitivity lists and wait statements
to synchronize entity execution and define when a com-
ponent in a structural architecture is active^ VSPEC
achieves the same end using the sensitive to claused
The sensitive to clause contains a predicate called
the activation condition that indicates when an entity
should begin executing. Effectively, this activation con-
dition defines when a VSPEC annotated entity's precon-
dition must hold. When the sensitive to predicate
is true, the pre-condition must hold and the imple-
mentation must satisfy the post-condition. When the
sensitive to predicate is false, the entity makes no
contribution to the state of the system. In the find
example, both components activate when any of their
input signals change.

Formally, the contribution of the sensitive to
clause to the transformation specified by VSPEC is eas-
ily represented using a traditional process algebra such
as CSP [9]. Components become processes and events
are defined as the states a component enters. Thus,
any VSPEC component can be described by a process
that consumes states and generates a process in a new
state. To define such state changes, a component state
is defined along with a means for combining component
states into an architecture state.

The formal VSPEC model of the state of a component
is based on Chalin's state model [4, Chapter 6] for LCL.

This model partitions the computational state of an
LCL description into an environment and a store [19].
The environment maps (variable) identifiers into ob-
jects and the store binds objects to the values they
contain:

Env =

Store =

= Id^ Obj

= Obj -> Value
(2)

(3)

Separating the environment and the store in this
fashion is common among formal models of program
state. In a language such as LCL, a motivating fac-
tor for this is to allow multiple names for the same
element of memory. For example, two C pointers can
obviously reference the same memory location. The
program state model above represents this situation
by mapping each of these pointers to the same object
in the Env map.

This partitioning of component state is used in the
VSPEC state model. In addition to allowing the correct
representation of VHDL access types, this partitioning
also allows the state of an abstract architecture to be
more easily represented. For a single VSPEC-specified

235

entity find is port

(input: in element_array;

k: in keytype;

output: out element);

includes Element(element,keytype,

element_array);

modifies output;

sensitive to

input'event or k' event;

requires true;

ensures forall (e : element)

(output = e implies

(e.key = k

and elem.of(e,input)));

constrained by

power <= 5 mW

and size <= 3 urn * 5 urn

and k<->output <= 5 Ms

and heat <= 10 mW

and clock <= 50 MHz;

end find;

entity bin_search is :

port (input: buffer element.array;

k: in integer;

value: out element);

modifies value;

sensitive to i

input/event or k'event;

requires sorted(input);

ensures output = e iff (e.key=k and

element_6f(e,input));

constrained by

power <= 1 mW and
sisize <= 1 urn *; 2 urn;

end bin_search;

Figure 2. VSPEC descriptions of find and binary search components.

component, Env contains a map from each port and
state variable in the VSPEC description to an object.J
Store maps each of these objects to their current value; i
We call this the abstract state of the VSPEC component.

When VSPEC components are connected together to
form an abstract architecture, the elements of Env and
Store are slightly different. The Store contains objects %
for each port in the architecture's entity, for each sig-
nal in the architecture and for the state variables of
each component in the architecture. The Env maps
each of these three types of elements to the proper ob-
ject, but it also maps the ports of each architecture
component to the object that represents the architec-
ture signal the port is connected to. We call the state
model of an abstract architecture the concrete state of
the component.

In the simple two component example of Figure 4,
the abstract state of system, A and B are:

The concrete state of the struct architecture is:

MnVgystem

Store system —

WEnVA =

StoreA =
£ ■; :]Ena^-:::, =

StoreßM:^=-\

{sysJn *-> objsys_in,

sys-out>~> objsys_out)

i Objsys_in .l-> Vgys_in ,

00JSyS_OUt |—r VSys^j>utf

{xn- objx,y i-> objy}

{objx H- vx, objy >-+Vy}

{w I-» objw,z >-» objz}

{objw i->- vw, objz M- vz}

Env, struct,v,ttm

Store. ■struct,y,tm —

{sys^in H- objsys_in,

sys-out H» objsys_out,

c H- objc, x H-> 0bjsys_in,

y H» objc,w i-)- objc,

z i-4 objsys_out}

\0bjSys_in ^ Vgys—ini

Objsys_out »"> Vsy^ut, objc •"> Vc}

^Notice that x, y, w and z now map to the objects
containing the signal values the component ports are
connected to.

The semantics of a VSPEC entity are defined by a CSP
process that defines the sequence of states the entity
passes through. Let C be an entity with sensitive
to, requires and ensures predicates S(St), I(St) and
0(St,St'post), respectively. The process defining C in
any state r is:

Cr = r : tf -* Cr>post (4)

where * = {t: Tc \ S (t)} is the set of states that satisfy
C"s activation condition and Px is the process P in
some state x. 0(r,r'post) must hold to assure the
transformation's correctness. Thus, when an external
force changes the abstract state to one that satisfies
the entity's activation condition (r in Equation 4), the
process will consume r and behave like Cr'post. A trace
of the process defined by a VSPEC entity is a sequence

236

architecture structure of find is
component sorter

port (input: in element_array;
output: out element_array);

end component;
component searcher

port (input: in element_array;
key: in integer;
value: out element);

end component;
signal y: element_array;

begin
bl: sorter port map(input,y);
b2: searcher port map(y,k,output);

end structure;

configuration test.vspec of find is
for structure

for bl:sorter use entity
work.sort(VSPEC);

end for;
for b2:searcher use entity

work.bin_search(VSPEC);
end for;

end for;
end test_struct;

input

instance b1 of
sorter component

y ,

instance b2 of
searcher component

output

key k
"

find entity

Figure 3. A VSPEC abstract architecture representation of the find component.

of abstract states the entity enters. Each of these states
satisfy C's activation condition. Thus, the alphabet of
C is equal to \£\

If f(St) implements the requirements specified by
I{Si) and 0{St,St'post) (i.e. f{St) satisfies Equa-
tion 1), Equation 4 can be re-written as:

Cr = r : * -> C/(r) (5)

In this situation, the process consumes r and / is
applied to r to generate a new abstract state. The
entity then behaves like the process defined by Cf(Ty

CSP's concurrency operator combines component
processes to define the behavior of a VSPEC architec-
ture. Let Cx, C2,..., Cn be the processes represented
by Equation 4 or 5 for the set of VSPEC component
instances in architectureA. The process representing
architecture A is:

A=C1\\Cs\\...\\Cn (6)

When the current state satisfies some component's
activation condition, the component performs its spec-
ified transformation to its abstract state. This change
is propagated to the concrete state of the architecture
where the activation condition of another component
may be satisfied. This causes the process to repeat
until the system changes to a concrete state where no
component's activation condition is satisfied. The sys-
tem then waits until some external source changes the
concrete state to one that activates some component in
the architecture to start the process again.

In the CSP model of a VSPEC process, this notion can
be understood by examining the possible traces of A

from Equation 6. Hoare [9] defines traces over parallel
composition, traces(Cx || Cz), as:

{t\(t\ ad)e traces{d)

A(t f aC2) e traces{Cs)

AtEiaCxUaCs)*}

Thus, the traces of a parallel composition of com-
ponents are all traces that when restricted to the al-
phabet of each component yield a trace of that com-
ponent. Furthermore, traces of Ci || Cz only contain
events from the alphabet of either components. Thus,
every trace of A contains only states that satisfy the
activation condition of at least one component in A.

If A enters a state where none of its component's
activation condition is true, it will wait for a change on
one of its input ports. Sequences in traces(A) con-
tain only states that activate a component of A so
the process representing A only consumes those states.
However, a change to a component's input port also
causes a state change and inactive components must
wait for events from external sources to initiate acti-
vation. Traces(A) is not strictly the set of all states a
component may enter, but the set of all states a com-
ponent enters from active states.

4. System Verification

This section describes how the CSP semantics of
a VSPEC abstract architecture can be used to verify
that an abstract architecture for an entity satisfies the
VSPEC specification of the entity. Many satisfaction

237

entity A is port

(x : in integer;

y : out integer);

requires IA{X);

ensures OA(X, y'post);
modifies y;

end A;

entity B is port

(v : in integer;

z : out integer);

requires IB{W)'>

ensures OB(W,Z'post);
modifies z;

end B;

architecture struct of system is

component A

port (x : in integer;

y : out integer);

end component;

component B

port (w : in integer;

z : but integer);
end component;

signal c;

begin
cl: A port map(sys_in,c);
c2: ;B port map(c,sys_out);

end struct;

entity system is port
(sys_in : in integer;
sys_out : out integer);

end system;

Figure 4. Example of two entities connected serially.1

criteria could be specified and checked. Here, two ex-
amples are considered: (1) weak bisimulation; and (2)
trace equivalence. Weak bisimulation will evaluate the
final state of a halting system. Trace equivalence will
look at traces from systems that do not halt. ■

Satisfaction criteria will be evaluated by comparing
the abstract states from the problem definition with
concrete states of the abstract architecture. To make
this comparison possible, an abstraction function that
maps concrete states to their abstract equivalent must
be defined. We call this function abs and note that a
concrete state c is equivalent to an abstract state a if
and only if abs(c) = a.

The most traditional correctness criterion used to
verify an abstract architecture implements its specifica-
tion is weak bisimulation [15]. A weak bisimulation (or
simply bisimulation) condition holds when a sequence
of states in the concrete model produces a desired sin-
gle state change specified by the abstract model (see
Figure 5). Only the first and last state of the con-
crete state sequence are significant. The specific state
sequence leading from the initial concrete state to the
final concrete state is ignored.

Equation 7 is a weak bisimulation correctness obli-
gation for showing architecture A satisfies a single ab-
stract state change specification. Here, ^^ is the set
of concrete states where the activation condition of at
least one component in A is true. The obligation states
that for concrete state traces starting in a state whose
abstract projection satisfies the abstract specification's
pre-condition, either the abstract projection of the fi-
nal process state in the trace satisfies the component

Abstract State

Concrete State

Figure 5. Concrete state changes associated with
a single abstract state change.

post-condition or the process can consume the state
and continue.

Vr : traces(A) ■ I(abs(r0)) A Ajr — As =>•

(O(o6s(r0), abs(s)) VsS VA)

For systems with clearly defined halting or pausing
points, Equation 7 is an appropriate correctness crite-
rion. However, many systems run continuously. Their
states are observable, but there is no notion of pausing
or halting to synchronize abstract state comparison.
To formulate the correctness criterion for these types
of systems, a concept similar to bisimulation is applied
to sequences of states rather than a single state change.

Traces can be derived from the abstract require-
ment specification by defining process R in state S as
Rs = 5 : $ -» Rs' in the same manner as the con-

238

S) |S'

Abstract State "^ Component Execution — >-

Concrete State

s'

Figure 6. Concrete state changes associated with
multiple abstract state changes.

crete requirements. Such traces are exactly one event
long when a single state change is defined. However, if
the resulting state satisfies the component's activation
condition, then the process will continue to consume
states. Thus, traces(Rs) is the set of finite abstract
state sequences defined for process R. With this, traces
through both the abstract requirements and concrete
specification are defined.

The image of a trace with respect to an abstraction
function, abs, is simply the abstraction function ap-
plied to each trace element, image({eo, e^,.. .,e„)) =
{abs (to) > abs (ej),..., abs (e„)). The reduce function i
eliminates invisible state changes by replacing adjacent
equivalent states in a trace with a single state. For ex-
ample, reduce({a, b, o, a, c, c, c)) = (a, 6, a, c).

A concrete specification is correct with respect to
reduced abstract equivalence if:

Vf : traces(P) • reduce(t) £ traces(R). (7)

In this case, an architecture specification is correct if
every trace of concrete states can be reduced to a legal
trace of abstract states. Reducing the state sequence
removes concrete state changes that are not observable
in the external state. It should be noted that the com-
ponent semantics thus far specifies only liveness prop-
erties (what the system must do) and largely ignores
safety properties (what the system must not do) [11].
The weak bisimulation semantic specifies only charac-
teristics of the resultant state and by definition ignores
characteristics of intermediate states. This should not
be viewed as a fatal flaw because this is precisely what
traditional block diagrams define. Some methodolo-
gies may extend the block diagram approach to include
safety properties, but the traditional diagram specifies
only what must happen and when it must happen.

5. Related Work

Odyssey Research Associates (ORA) is developing
Larch/VHDL, an alternative Larch interface language

for VHDL [10].' Larch/VHDL is targeted for formal anal-
ysis of a VHDL description and ORA is defining a formal
semantics for VHDL using LSL. The LSL representations
are used in a traditional theorem prover (Penelope, de-
veloped for a similar annotation language for Ada [6])to
verify system correctness. Larch/VHDL annotations are
added to a specific VHDL description to represent proof
obligations for the verification process. This differs
from VSPEC'S purpose of representing requirements and
design decisions at high levels of abstraction.

: Augustin and Luckham's VAL [2] is another attempt
to annotate VHDL. The purpose of a VAL annotation
to a VHDL description is to document the design for
verification, VAL provides mechanisms for mapping a
behavioral description to a structural description. Two
VAL/VHDL descriptions of a design can be transformed
into a selfchecking VHDL program that is simulated to
verify that the two descriptions implement the same
function. This is once again slightly different than
VSPEC'S purpose of high level requirements represen-
tation.

The abstract architecture representation capabilities
of VSPEC are also fairly closely related to several archi-
tecture description languages that have been developed

I to describe software architectures [5]. Some of the more
well known architecture description are UniCon [18],
WRIGHT [1] and RAPIDE [13, 14]. Each of these lan-

jguages allow the definition of components and connec-
tors to define a software architecture. This is very sim-
ilar to the VHDL notion of a structural architecture.

Allen and Garlan's WRIGHT language is of particu-
lar interest when discussing VSPEC because a WRIGHT

component is defined with a variant of CSP. Unlike
VSPEC'S use of CSP to define component synchroniza-
tion, WRIGHT uses CSP to define component behavior
as well. A WRIGHT description consists of a collection
of components interacting via instances of connector
types. WRIGHT'S CSP descriptions define the sequence
of events a component or connector participates in.

6. Conclusions

This paper presented VSPEC, a requirements spec-
ification language for VHDL, emphasizing VSPEC ar-
chitecture representation. A VSPEC specification de-
scribes the pre-condition, post-condition, performance
constraints and activation condition of a VHDL entity.
When the activation condition is true, the entity's pre-
condition must hold and the entity is responsible for
making its post-condition hold in the next state. The
semantics of a single component VSPEC specification is
based on the canonical Larch axiomatic approach while
CSP is used to define the semantics of an architecture

239

of components. Two satisfaction criterion used to ver-
ify that an architecture is a refinement of requirements
specification were discussed here: weak bisimulation
and trace equality. Weak bisimulation evaluated an
architecture's halting state with respect to a require-
ments specification. Trace equality compared state
traces from systems that do not halt. These mecha-
nisms allow an architectural description to be formally
analyzed at the requirements level.

At the present time, the first version of the lan-
guage definition is complete. A VSPEC parser that type
checks expressions by calling an LSL parser has been im-
plemented. Constraint theories for the five basic con-
straints (power, area, heat dissipation, clock speed and
pin to pin timing) have been developed. The formal:k
semantics of a single component VSPEC specification
based on the canonical Larch approach is complete as
is the first cut at the semantics of an abstract archi-
tecture using CSP. Several specifications using these
techniques have been developed, but further investiga-
tion into architecture semantics is needed.

The main area of future work for VSPEC is to re-
fine the semantics of an abstract architecture of VSPEC

components. The CSP semantics presented in this pa-
per are useful, but we may investigate using a; different
process algebra such as CCS [16] to describe architec-
tures. The main reason for this is that weak bisimula-
tion was originally formulated using CCS and it may be
more natural to reason about weak bisimulation using
this process algebra.

One of the primary goals of this research is to pro-
vide a mechanism that allows the affects of architecture
decisions to be evaluated earlier in the design process.
VSPEC accomplishes this goal by allowing components
in an architecture to be described using a traditional
axiomatic specification and formally modeling the in-
teractions between components using a process algebra.
This approach allows architecture decisions to be eval-
uated at the requirements level which should improve
overall design quality.

References

[1] R. Allen and D. Garlan. Formalizing Architectural
Connection. In Proc. Sixteenth International Confer-
ence on Software Engineering, pages 71-80, May 1994.

[2] L. Augustin, D. Luckham, B. Geimart^Y. Huh, and
A. Stanculescu. Hardware Design arid Simulation in
VALJVHDL. Kluwer Academic Publishers, Boston,
MA, 1991.

[3] P. Baraona, J. Penix, and P. Alexander. VSPEC: A
Declarative Requirements Specification Language for
VHDL. In J.-M. Berge, O. Levia, and J. Rouillard, ed-
itors, High-Level System Modeling: Specification Lan-

guages, volume 3 of Current Issues in Electronic Mod-
eling, chapter 3, pages 51-75. Kluwer Academic Pub-
lishers, Boston, MA, 1995.

[4] P. Chälin. ;: On the Language Design and Semantic
Foundation of LCL, a Larch/C Interface Specifica-
tion Language. fPhfo thesis, Concordia University,
Department of Computer Science, Montreal, Quebec,
Canada, December 1995.

[5] D. Garlan and M. Shaw. An Introduction to Software
Architecture. In V. Ambriola andG. Tortora, editors,
Advances in Software Eng. and Knowledge Eng., vol-
ume 2, pages 1-39. World Scientific, New York, 1993.

[6] D. Guaspari. Penelope: An Ada Verification System.
In Proceedingsof Tri-Ada '89, pages 216-224, Pitts-
burgh, PA, October 1989.

[7] J. V. JGuttag and J. J. Horning. Introduction to
LCL, A Larch/C Interface Language. Technical Re-
port 74, Digital Equipment Corporation Systems Re-
search Center, 130 Lytton Avenue, Palo Alto, CA
94301, July 1991.

[8] J. V. Guttag and J-J. Horning. Larch: Languages and
Tools for Formal Specification. Springer-Verlag, New
York, NY, 1993o

[9] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, 1985.

(10] D. Jamsek and M. Bickford. Formal Verification of
VHDL Models. Technical Report RL-TR-94-3, Rome
Laboratory, Griffiss Air Force Base, NY, March 1994.

[11] L. Lamport; A Simple Approach to Specifying Concur-
rent Systems. Communications of the ACM, 32(1):32-
45, January 1989.

: [12] G. T. Leavens. Larch/C+-1- reference manual. Avail-
able at: ftp://ftp.cs.iastate.edu/pub/larchc++/
lcpp.ps.gz, 1995.

[13] D. :;Luckham, J. Kenney, L. Augustin, J. Vera,
D- Bryan, and W. Mann. Specification and Analysis
of System Architecture Using Rapide. IEEE Transac-
tions on Software Engineering, 21(4):315-355, April

1 1995.
: [14] D. Luckham and J. Vera. An Event-Based Architec-

ture Definition Language. IEEE Transactions on Soft-
ware Engineering, 21(9):717-734, September 1995.

[15] R. Milner. A Calculus of Communicating Systems,
volume 92 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1980.

[16] R. Milner. Communication and Concurrency. Interna-
tional Series in Computer Science. Prentice Hall, New
York, NY, 1989.

[17] D. Perry. VHDL. McGraw-Hill, New York, NY, 1st
edition, 1991.

[18] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and
G. Zelesnik. Abstractions for Software Architecture
and Tools to Support Them. IEEE Transactions on
Software Engineering, 21(4):314-335, April 1995.

[19] R. Tennent. Principles of Programming Languages.
Computer Science Series. Prenitce-Hall International,
1981.

240

APPENDIX 0:
Formal Representations for Abstract System Evaluation"

Perry Alexander
Department of Electrical & Computer Engineering and Computer Science

PO Box 210030 The University of Cincinnati
Cincinnati, OH

alex@ececs.uc.edu

Abstract
Evaluating design decisions early in the design pro-

cess is critical for cost effective design. Formal anal-
ysis can provide such evaluation if architectures are
defined in a formal way. VSPEC is a Larch interface
language for VHDL that annotates VHDL entities using
the axiomatic style provided by Larch interface lan-
guages. Using VHDL's structural definition support,
entities described in this manner can be connected
to form architectural descriptions. Activation condi- \
tions over component inputs define when the compo-
nent must perform its transform. In this paper, we
provide a simple introduction to VSPEC and its mech-
anisms for describing systems architectures.

1 Introduction

Design decisions made early in a system's design
profoundly affect overall design quality. Unfortu-
nately, such decisions are rarely evaluated until late
in the design process. Simulation-based design lan-
guages such as VHDL [10]do not allow evaluation until
complete models exist.: Such models include not only |
abstract decisions, blip also low level component de-
sign decisions. For large systems, simulatable models
appear late in the design increasing the cost of error
correction.

A solution to late evaluation is formal analysis at
the requirements level.: Formal representation of re-
quirements and abstract architectures supports anal-
ysis of incomplete systems at high abstraction lev-
els. Furthermore, formalisms provide some guaran-
tee of rigqfiin representation and correctness in analy-
sis. Abstract architectures support representation and
analysis of requirements partitioning attempts and ar-
chitecture level design decisions.

Supportfor this work was provided in part fey the Advanced
Research Projects Agency arid monitored by: Wright Labs under
the RASSP Technology Program, contract number F33615-93-
C-1316.

An abstract architecture is an inter-connected col-
lection of components where the requirements of each
component are specified without defining their imple-
mentation. Thus, an abstract architecture describes a
class of solutions rather than a single instance. Instead
of waiting for a completed system including design
detail, formally described abstract architectures can
be evaluated when architecture decisions are made.
VSPEC [1, 2], a Larch interface language [4, 6] for
VHDL [10], is a requirements description language that
includes formal architecture definition support.

VSPEC describes the requirements of digital system
components using the canonical Larch approach and
interconnects component descriptions using VHDL'S

structural definition features. Each VHDL entity is
annotated with a pre- and post-condition to indi-
cate the component's functional requirements. VSPEC-
annotated entities are connected together using a
VHDL structural architecture to form an abstract ar-
chitecture. The VHDL architecture indicates intercon-
nection in the traditional manner, but the require-
ments of each component are defined instead of their
implementations. An activation condition can be de-
fined to explicitly indicate when a component should
execute. Finally, VSPEC allows a designer to describe
non-functional requirements critical in selecting from'
alternative architecture implementations.

2 A Brief Summary of VSPEC
VSPEC is a requirements specification language for

digital systems. As a requirements specification lan-
guage, it is used very early in the design process to
describe "what" a digital system must do. The op-
erational style of VHDL makes VHDL alone ill-suited
for requirements specification. It forces a designer to
describe a system by defining a specific design arti-
fact that describes "how" the system behaves. Using
VHDL as a requirements specification language forces
a designer to deal with unnecessary detail at an early
point in the design process.

241

In contrast to VHDL's operational style, VSPEC al-
lows a designer to declaratively describe a compo-
nent. A VSPEC description of a sorting component
is shown in Figure 1. As with most other Larch in-
terface languages, the requires and ensures clauses
are used to state the pre- and post-conditions of the
component. The sort component does has a pre-
condition of true which means it will function cor-
rectly for any set of inputs. The post-condition states
that the output contains all the same elements as the
input (i.e. permutation(output'post, input)) and
the output is in order. Any implementation of a sort#
ing component that makes this post-condition true
in the next state is a valid implementation of these;;
requirements. More generatlly, given a component?:
with requires predicate I(St) and ensures predicate
0(St, St'post)1, f(St) is an implementation of the re-
quirements if the following condition holds:

Vs»I{St)=>0(St,f{St)) (1)

In addition to allowing a designer to describe
"what" a component does, VSPEC also addresses an-
other shortcoming of VHDL: it allows a designer to
specify performance constraints in a consistent fash-
ion. The VSPEC constrained by clause is used for
this purpose. As shown in Figure 1, this clause defines
relations over constraint variables. Currently, the de-
fined constraint variables include power consumption,
layout area (expressed as a bounding box), heat dissi-
pation, clock speed and pin to pin timing. Constraint
theories written in LSL define each constraint type.
Users may define their own constraints and theories if
desired.

The state clause contains a list of variable dec-■;•!
larations that define the internal state of a compo-
nent. These variables maintain state information that
may not be recorded by the values of the component's
ports. A state clause is not needed in the sorting
component specification in Figure 1.

The modifies clause lists variables, ports and sig-
nals whose values may be changed by the entity. Most
other Larch interface languages contain a modifies
clause, and the definition of VSPEC modifies clause
is very similar to the definitions foiirid in these lan-
guages [3|;;5, 8]. The includes clause is used to in-
clude Larch Shared Language definitions in a VSPEC

description. The sorts and operators defined in the LSL
trait liamed by the includes clause can be used in the

1The St'post notation: references the value of St in the state
after the transforniatiort: described by the entity is performed.
This is analogous to the variable' notation öf LCL [3, 5]

VSPEC definition. In this example, the SortOps trait
defines two predicates: permutation and sorted.

The sensitive to clause plays the same role in a
VSPEC definition that sensitivity lists and wait state-
ments play in a VHDL description. It defines when
a component is active. The sensitive to clause
for sort in Figure 1 states that the entity activates
(and sorts its input) whenever the input changes.
The sensitive to clause contains a predicate indi-
cating when an entity should begin executing. The
next section contains a more precise semantics for the
sensitive to predicate.

3 Abstract Architectures

::::j::: VHDL structural architectures composed of VSPEC

annotated components specify abstract architectures.
The VHDL architecture remains unchanged indicat-
ing component instantiation and connections. How-
ever, the configuration does not assign an en-
tity/architecture pair to each component instance in
the architecture. Instead, the configuration states that
each component references an entity with an architec-
tureiijcalled VSPEC. This signifies that at the current
point in the design, the requirements of this compo-

snent are known (via the VSPEC description) but no
I implementation has been defined.

Consider the VSPEC description of a find compo-
nent shown in Figure 2a. The output of find is the el-

; ement from the input array with the same key as the
k input. This requirement is represented by find's
ensures clause. One possible way to meet this re-
quirement is to connect the output of a sorting com-
ponent to a binary search component as shown in Fig-
ure 3. The specification for sort is the same as the
one in Section 2 while the bin_search specification
is shown in Figure 2b. The only difference between
this structural description of find and a VHDL struc-
tural description of find is the configuration specifies
that the VSPEC descriptions of sort and bin_search
should be used instead of a specific architecture for
these two entities. This configuration describes an
abstract architecture for the find component. Any
implementation satisfying the VSPEC requirements of
sort and bin_search may be associated with these
entity definitions. The abstract architecture for find
defines a class of solutions with a common structure.

Although a VHDL architecture referencing VSPEC
definitions defines components and interconnections,
additional information must be added to specify when
the VSPEC components activate. In traditional se-
quential programming, a language construct "exe-
cutes" following termination of the construct pre-

242

entity sort is port
(input: in integer.array;
output: out integer_array);

includes SortOps;
modifies output;
sensitive to input'event;
requires true;
ensures

permutation(output'post, input) and
sorted(output'post);

constrained by
power <= 5 mW and size <= 3 urn * 5 um
and heat <= 10 mW and clock <= 50 MHz
and input<->output <= 5 Ms;

end sort;

H

sort

input

i

y
X

\ '

t t
Vcc Clk
 =>-

output

Time

Figure 1: VSPEC description of a sorting component.

ceding it. For correct execution, a construct's pre-
condition must be satisfied when the preceding con-
struct terminates. In .hardware systems, components
exist simultaneously and behave as independent pro-
cesses. No predefined execution order exists so there
is no means of implicitly determining when a compo-
nent's pre-condition should hold.

VHDL provides sensitivity lists and wait state-
ments to synchronize entity execution and define when
a component in a structural architecture is active.
VSPEC achieves the same end using the sensitive to
clause. The sensitive to clause contains a predicate
called the activation condition that indicates when an
entity should begin executing. Effectively, this acti-
vation condition defines when a VSPEC annotated en-
tity's precondition must hold. When the sensitive
to predicate is true, the pre-condition must hold and
the implementation must satisfy the post-condition.
When the sensitive :to predicate is false, the en-
tity makes no contribution to the state of the system.
In the find example, both components activate when
any of their input signals change.

Formally, the contribution of the: sensitive to
clause to the transformation specified by VSPEC is eas-
ily represented using a traditional process algebra such
as CSP [7]. Components become processes and events
are defined as the states a component enters. Thus,
any VSPEC component can be described by a process
that consumes states and generates a process in a new
state. To define such state changes, a component state
is defined along with a means for combining compo-
nent states into an architecture state.

The formal VSPEC model of the state of a com-
ponent is based oii Chalin's state model [3, Chapter
6] for LCL. This model partitions the computational

state of an LCL description into an environment and
a store [11]. The environment maps (variable) iden-
tifiers into objects and the store binds objects to the
values they contain:

...Env =

Store —

= Id-> Obj

— Obj —> Value
(2)

(3)

Separating the environment and the store in this
fashion is common among formal models of program
state. In a language such as LCL, a motivating fac-
tor for this is to allow multiple names for the same
element of memory. For example, two C pointers can
obviously reference the same memory location. The
program state model above represents this situation
by mapping each of these pointers to the same object
in the Env map.

This partitioning of component state is used in the
VSPEC state model. In addition to allowing the correct
representation of VHDL access types, this partition-
ing also allows the state of an abstract architecture
to be more easily represented. For a single VSPEC-
specified component, Env contains a map from each
port and state variable in the VSPEC description to
an object. Store maps each of these objects to their
current value. We call this the abstract state of the
VSPEC component.

When VSPEC components are connected together
to form an abstract architecture, the elements of Env
and Store are slightly different. The Store contains ob-
jects for each port in the architecture's entity, for each
signal in the architecture and for the state variables of
each component in the architecture. The Env maps
each of these three types of elements to the proper

243

entity find is port

(input: in element_array;

k: in keytype;

output: out element);

includes Element(element,keytype,

element_array);

modifies output;

sensitive to

input'event or k'event;

requires true;

ensures forall (e : element)

(output = e implies

(e.key = k
and elem_of(e,input)));

constrained by

power <= 5 mW

and size <= 3 urn * 5 urn

and k<->output <= 5 Ms

and heat <= 10 mW

and clock <= 50 MHz;

end find;

(a.)

entity bin_search is

port (input: buffer element_array;

k: in integer;

value: out element);

modifies value;

sensitive to

input'event or k'event;

requires sorted(input);

ensures output = e iff (e.key=k and

element^of(e,input));
: .constrained by

power <= 1 mV and

size <= 1 um * 2 um;

end bin_search;

(b.)

Figure 2: VSPEC descriptions of find and binary search components.

object, but it also maps the ports of each architecture
component to the object that represents the architec-
ture signal the port is connected to. We call the state
model of an abstract architecture the concrete state of
the component.

In the simple two component example of Figure 4,
the abstract state of system, A and B are:

Mill)system

StoreSystem —fi9{objSys_in |->

{sys-in ■-*. objsy$_,in,

SyS-OUt t-> Objsys-out)

sys_m>.;

Ovjsys—out l—* 'Osys—out)

EnvA -■!= {x >-> objXl y •-*- objy}

StoreA - {objx >^> vx,objyi-*iiy)

Envß = {w..!->■ objw, z >->■ objz\

Stores = {objw >-* vw, objz <-»■ vz} g

The concrete state of the struct architecture is:

Envstr*ctsy$tem = {sys—in

sys-oui
' 0"]sys^im

objsys—out,

C H-+ objc, X *-* objSys_in,

y>-* objc,w >->• objc,

Store. structsystem

Z >->• 0bjsys_0Ut}

{0bjsys_i 'sys—in l—* ^sys_jnj

'sys—out obj,

objc >-* vc}

■ v. hys—out j

Notice that x, y, w and z now map to the objects
containing the signal values the component ports are
connected to.

::iThe semantics of a VSPEC entity are defined by
a CSP process that defines the sequence of states
the entity passes through. Let C be an entity
with sensitive to, requires and ensures predi-
cates S{St), I{St) and 0(St, St'post), respectively.
The process defining C in any state r is:

Cr = r:V ■T'post (4)

where * = {t : Tc\S(t)} is the set of states that sat-
isfy C's activation condition and Px is the process P
in some state x. 0(r, r'post) must hold to assure the
transformation's correctness. Thus, when an external
force changes the abstract state to one that satisfies
the entity's activation condition (r in Equation 4), the
process will consume r and behave like Cr'p0st- A
trace of the process defined by a VSPEC entity is a se-
quence of abstract states the entity enters. Each of
these states satisfy C's activation condition. Thus,
the alphabet of C is equal to \P.

architecture structure of find is
component sorter
port (input: in element_array;

output:' out element_array);
end component;
component searcher
port (input: in element_array;

key: in integer;
value: out element);

end component;
signal y: element_array;

begin
bl: sorter port map(input,y);
b2: searcher port map(y,k,output);

end structure;

244

configuration test_vspec of find is
for structure

for bl:sorter use entity
uork.sort(VSPEC);

end for;
for b2:searcher use entity

work^bin_search(VSPEC);
end for;

end for;
end test_struct;

input_

instance b1 ol
sorter component

input output

instance b2 of
searcher component
input

valuo

key

output

find entity

Figure 3: A VSPEC abstract architecture representation of the find component.

If f(St) implements the requirements specified by
I (St) and 0(St,St'post) (i.e. f(St) satisfies Equa-
tion 1), Equation 4 can be re-written as:

Cr = r : * -* C/(r (5)

In this situation, the process consumes r and /is
applied to r to generate a new abstract state. The
entity then behaves like the process defined by C/(r)-

CSP's concurrency operator combines component
processes to define the behavior of a VSPEC architec-
ture. Let Ci,Cz,...,Cn be the processes represented
by Equation 4 or 5 for the set öf ySPEC component
instances in architecture A. The process representing
architecture A is:

A = .Cf\\CiM....\\Cni (6)

When the current state satisfies; some component's
activation condition, the component performs its spec-
ified transformation to its abstract state. This change
is propagated to the concrete state of the architecture
where the activation condition of another component
may be satisfied. This causes the process to repeat
until the system changes to a concrete state where no
component's activation condition is satisfied. The sys-
tem then waits until some external source changes the
concrete; state to one that activates some component
in thefarchitecture to start the process again.

In the CSP model of a VSPEC process, this notion
can be understood by examining the possible traces
of A from Equation 6. Hoare [7] defines traces over
parallel composition, iraces(Cj || Cg), as:

iräces(Cj \\ C2) = {t\(t \ aCi) e traces(d)

A(t \ aC2) € traces(C2)

M€(aCi UaC2)*}

Thus, the traces of a parallel composition of com-
ponents are all traces that when restricted to the al-
phabet of each component yield a trace ofthat compo-
nent. ? Furthermore, traces of Cj || C2 only contain
events from the alphabet of either components. Thus,
every trace of A contains only states that satisfy the
activation condition of at least one component in A.

If A enters a state where none of its component's
activation condition is true, it will wait for a change
on one of its input ports. Sequences in traces(A) con-
tain only states that activate a component of A so
the process representing A only consumes those states.
However, a change to a component's input port also
causes a state change and inactive components must
wait for events from external sources to initiate acti-
vation. Traces(A) is not strictly the set of all states
a component may enter, but the set of all states a
component enters from active states.

4 Conclusions
This paper presented a basic introduction to VSPEC,

a requirements specification language for VHDL. A
VSPEC specification describes the pre-condition, post-
condition, performance constraints and activation

2RecaU that in csp [7], t \ aP restricts the trace t to contain
only events that appear in the alphabet of P.

?M5

entity A is port

(x : in integer;

y : out integer);

requires IA{X)\

ensures O^ (x, y'post);
modifies y;

end A;

entity B is port

(w : in integer;

z : out integer);

requires Iß(w);
ensures Og(w, z'post);
modifies z;

end 6;

entity system is port

(sys_in : in integer;

sys_out : out integer);

end system;

architecture struct of system is

component A

port (x : in integer;

y : out integer);

end component;

component B:

port (w : in integer;

z : out integer);

end component;

signal c;

begin

cl: A port map(sys_in,c);

c2: B port map(c,sys_out);

end struct;

Figure 4: Example of two entities connected serially.

condition of a VHDL entity. When the activation con-
dition is true, the entity's pre-condition must hold and
the entity is responsible for making its postcondition
hold in the next state. The semantics of a single com-
ponent VSPEC specification is based on the canonical
Larch axiomatic approach while CSP is used to define
the semantics of an architecture of components.

References

[1] ALEXANDER, P., BARAONA, P., AND PENIX, J.
Using Declarative Specifications and Case-Based
Planning for System Synthesis. Concurrent En-
gineering: Research and Applications 2, 4 (1994).:;

[2] BARAONA, P., PENIX, J., AND ALEXANDER, P.
VSPEC: A Declarative Requirements Specifica-
tion Language for VHDL. In Eigh-Level System
Modeling: Specification Languages, J.-M. Berge,
O. Levia, and J. Rouillard, Eds., voL:3 of Current
Issues in Electronic Modeling. Kluwer Academic
Publishers, Boston, MA, 1995, ch. 3, pp. 51-75.

[3] CHALIN, P. On the Language Design and Seman-
tic Foundation of LCL, a Larch/C Interface Spec-
ification Language. PhD thesis, Goncordia Uni-
versity, Department of Computer: Science, Mon-
treal^ Quebec, Canada, December 1995.

[4] GUTTAG, J., HORNING, J., ANDIWING, J. The
Larch Family of Specification Languages. IEEE
Soßware 2, 5 (1985), 24-36.

: ;:[5]:GUTTAG, J- V., AND HORNING, J. J. Intro-
duction to LCL, A Larch/C Interface Language.
Tech. Rep. 74, Digital Equipment Corporation
Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, July 1991.

[6] GUTTAG, J. V., AND HORNING, J. J. Larch:
Languages and Tools for Formal Specification.
Springer-Verlag, New York, NY, 1993.

[7]:HOARE, C. A. R. Communicating Sequential
■; Processes. Prentice-Hall, Englewood Cliffs, 1985.

f;[8] LEAVENS, G. T. Larch/C++ Reference Man-
ual. Available at
ftp://ftp.cs.iastate.edu/pub/larchc-l--l-/lcpp.ps.gz.,
1995.

[9] MlLNER, R. Communication and Concurrency.
International Series in Computer Science. Pren-
tice Hall, New York, NY, 1989.

[10] PERRY, D. VHDL, 1st ed. McGraw-Hill, New
York, NY, 1991.

[11] TENNENT, R. Principles of Programming Lan-
guages. Computer Science Series. Prenitce-Hall
International, 1981.

246

APPENDIX P:

Abstract Architecture Representation Using VSPEC*

Phillip Baraona and Perry Alexander
Department of Electrical and Computer Engineering

and Computer Science
The University of Cincinnati

Cincinnati, OH
{pbaraona,alex}@ececs.uc.edu

August 2, 1996

Abstract

Complex digital systems are often decomposed into architectures very early in the design

process. Unfortunately, traditional simulation based languages such as VHDL do not allow the

impact of these architectural decisions to be evaluated until a complete, simulatable design of the

system is available. After a complete design is available, architectural errors are time-consuming

and expensive to correct. However, there is an alternative to simulation based techniques: for-

mal analysis of abstract architectures at the requirements level. This paper describes VSPEC's

approach for defining and analyzing abstract architectures. VSPEC is a Larch interface language

for VHDL that allows a designer to specify the requirements of a VHDL entity using the canonical

Larch approach. VHDL structural architectures that instantiate VSPEC entities define abstract

architectures. These abstract architectures can be evaluated at the requirements level to de-

termine the impact of architectural decisions. This paper briefly introduces VSPEC, provides a

formal definition of VSPEC abstract architectures and presents two examples that illustrate the

architectural definition capabilities of the language.

This paper was submitted to the; VLSI Design journal on February 29, 1996. It was revised and resubmitted on
July 25, 1996. Support for this work was provided in part by the Advanced Research Projects Agency and monitored
by Wright Labs under the RASSP Technology Program, contract number F33615-93-C-1316.

247

1 Introduction

Architectural design decisions made early in a system's design profoundly affect overall design

quality. Unfortunately, architecture decisions are rarely evaluated until late in the design process.

Simulation-based design languages such as VHDL [5, 12] do not allow evaluation until complete

models exist. For large systems, simulatable models appear late in the design process driving

up the cost of error correction. These models include not only architectural decisions, but also

component design decisions. The ability to analyze architectural decisions as they are made would

significantly reduce this cost.

A solution to late architecture evaluation is formal analysis of abstract architectures at the

requirements level. An abstract architecture is an interconnected collection of components where

the requirements of each component are specified without denning their implementation. Thus, an

abstract architecture describes a class of solutions with a common structure rather than a single

instance from that class. Formally described abstract architectures can be evaluated early in the

design process when architecture decisions are made before component designs exist.

VSPEC [7], a Larch interface language [10] for VHDL [12], is a requirements specification language

that includes formal architecture definition support, VSPEC describes the requirements of digital

system components using the canonical Larch;approach. Each VHDL entity is annotated with a pre-

and post-condition to specify the entity's functional requirements. vsPEC-annotated entities can

be connected together using a VHDL structural architecture to form abstract architectures. The

VHDL architecture indicates interconnection in the traditional manner, but the VSPEC specification

defines the requirements of each component instead of a specific design.

The description of a sorting component illustrates the difference between VHDL and VSPEC. In

VHDL, the simplest way to describe the function of a sorting component is a behavioral architecture

that implements a quicksort, bubble sort or some other sorting algorithm. This is actually a

description of ^ow" the sorting component behaves. In contrast, a VSPEC specification of this

248

entity sort is
port (input: in element_array;

output: out element_array);
includes SortPredicates;
modifies output;
sensitive to input'event;
ensures

permutation(output'post,input);
ordered(output'post);

end sort;

Figure 1: VSPEC description of a sort entity.

component explicitly describes "what" the device must do without defining "how" it is done. A

VSPEC description of a sorting component is shown in Figure 1. It states the output has all

the same elements as the input (permutation(output'post,input)) and the output is in order

(ordered(output'post)). Any sorting algorithm may be used to implement these requirements,

but VSPEC allows this algorithm to be chosen later in the design process.

Larch interface languages have been developed for a variety of programming languages includ-

ing C [9], C++ [15] and Modula-3 [14]. At the single component level, VSPEC differs very little

from other interface languages. However, defining a Larch interface language for VHDL presents

a problem not found in these other languages. In traditional programming languages, a language

construct executes after the construct immediately preceding it terminates. In VHDL, there is no

implicit execution order among process level constructs and thus no means of determining when a

component's pre-condition should hold, VSPEC addresses this problem by allowing a user to define

an activation condition in addition to the pre- and post-condition for an entity. When an entity's

state satisfies its activation condition; its pre-condition must hold and the entity must perform its

specified transformation.

This paper describes VSPEC, concentrating on the language's facilities for describing abstract

architectures. Section 2 provides a brief summary of the VSPEC language. Section 3 describes

vsrac abstract architectures, including a definition of the VSPEC state model and a description of

how a process: algebra (CSP [11]) is used to provide a semantics for the VSPEC activation condition.

249

Section 4 presents two example VSPEC specifications, concentrating on the architecture representa-

tion portions of each specification. Finally, the paper concludes with a discussion of related work

and a brief summary.

2 VSPEC

VSPEC is used to describe "what" a digital system should do. It adds a requirements definition

capability to VHDL entities analogous to the requirements definition capability that Larch interface

languages add to traditional procedure and function signatures. ^ As shown in Figure 2, the require-

ments of a VHDL entity can be defined by describing a relationship from the current inputs and

state of the system to the outputs and the next state. This section describes how F(x, s) and s are

defined in VSPEC and contrasts thesedefinitions: with VHDL definitions of F(x, s) and s.

input
ports

entity E i

X *F(x,s)n
 ^

Z i

L- S :«

output
ports

Figure 2: State-based specification model.

As shown in the find entity of Figure 3, a VHDL entity defines an interface. The output of find

should be the element from the input array with the same key as the key input. A VHDL entity

does not describe functional information such as this. The entity only defines the component's

interface.

entity::find is port
(ittpüt: in element_axray;
key: in keytype;
output: out element);

end find;

input

key

find -

??? output

Figure 3: A VHDL entity defining the interface for a find component.

250

architecture behavior of find is

begin

process (input,k)
begin

for i in input'range loop

if key = input(i).key then

output <= input(i);
exit ;

end if;

end loop;

end process;

end behavior;

Figure 4: A behavioral VHDL architecture defining tie find component's behavior.

The VHDL architecture construct describes the function of a component by associating be-

havior and/or structure with an entity. Figure 4 is a behavioral VHDL description of the find

component's function. In terms of the state model in Figure 2, this architecture describes F(x,s)

as a linear search algorithm. This looks very similar to a C or Pascal function describing "how" the

system behaves. Unfortunately, this operational description biases the system towards a particular

implementation. Since VSPEC'S purpose is requirements specification, it is undesirable to bias the

system to a particular implementation this early in the design process.

VSPEC eliminates this;problem by allowing a user to declaratively specify the requirements of

a digital system. Seven clauses annotate the VHDL entity construct to allow the specification of

"what" a component should do instead of VHDL'S description of "how" the component performs

this function. The requires, ensures and sensitive to clauses are used to specify the device's

functional requirements. Non-functional constraints are described in the constrained by and

modifies clauses. The component's internal state is declared in the state clause and the includes

clause is used to make types and operators from a Larch shared language description visible in a

VSPBG
;
 component. The remainder of this section briefly summarizes these clauses. For a more

complete description of the VSPEC clauses, see one of the other VSPEC references. [1, 7]

I Component function is described in the requires and ensures clauses. The requires clause

defines a pre-condition over inputs and state variables while the ensures clause defines a post-

251

entity find is port

(input: in element_array;

k: in keytype;

output: out element);

includes Element(element,keytype,

element_array);

modifies output;

element
array

key

m ;"■"■'.

search
requires true; _ a

y F(ln)
ensures forall (e : element)

(output = e implies
(e.key = k

and elem_of(e,input)));

constrained by

power <= 5 mW

and k<->output <= 5 Ms
and heat <= 10 mW

and clock <= 50 MHz;
end search;

■ ;■

—■—^

." x

t t
Vcc Clk

Time T

element

Figure 5: The find entity annotated with a VSPEC definition.

condition over inputs, outputs and state variables. The ensures clause defines legal outputs and

the next state when the requires clause is satisfied. A component's user is responsible for making

certain the requires clause is satisfied whenever the component is in use. When the requires

clause is satisfied, the described entity is responsible for making the ensures clause true.

Let a be the state of aVSPEC entity as denned by its ports and state variables. If 1(a) is the

requires predicate and Ö(cr,cr') is the ensures predicate, then the VSPEC annotation defines the

following requirements:

Va-3a'-I(a)=> 0(a,a') (1)

F(a) is an implementation of these requirements if the following condition holds:

Va-I(a)^0(a,F(a)) (2)

A VSPEC description of a find component is shown in Figure 5. Notice that the requires

clause predicate is true meaning this entity will function correctly for any set of inputs of the

proper type. The ensures clause predicate states that the output element has the same key as

the k input and output is in thefinput sequence. In terms of the state model in Figure 2, this

defines the requirements of F(0s), but unlike the VHDL description, it does not describe how to

252

implement the component.

The VSPEC sensitive to clause1 is used to define when a component in an abstract architecture

is active. When the sensitive to clause predicate is true, a component's pre-condition must hold

and an implementation must satisfy the post-condition. A more precise description of this clause

can be found in Section 3.

Performance constraints are described in the constrained by and modifies clauses. Con-

straints define requirements such as clock speed or layout area that are not part of the functional

description. The constrained by clause defines relations over constraint variables. Currently, the

defined constraint variables include power consumption, clock speed, area, pin-to-pin timing, and

heat dissipation. Constraint theories written in the Larch Shared Language (LSL) [10] define each

constraint type. Users may define their own constraints and theories if desired. The modifies

clause lists variables, ports and signals whose values may be changed by the entity. This clause

is useful when specifying whether an entity modifies a shared variable. The list of objects an en-

tity modifies is not a traditional performance constraint, but this does restrict the set of potential

solutions. Examples of the constrained by and modifies clauses are shown in Figure 5.

The state of a VSPEG entity is described by the port definition and variables in the state

clause. In VHDL, ports maintain their values between entity invocations. Thus, port values

from the previous'state may be accessed in the current state. The state clause is used to define

internal state variables that are used in the VSPEC definition only. These variables maintain state

information that is not recorded in port values. When a VSPEC specification is refined into a VHDL

architecture, these internal state variables will be refined into signals or variables that represent

the sameihförmation. The state clause variable declaration represents this information during

the requirements specification phase of the entity's design. An example of the state clause can be

found in the Move Machine description in Section 4.2.

Previous versions of VSPEC [1, 2, 7] did not have a sensitive to clause.

253

The includes clause is the final VSPEC clause.2 This clause is used to include LSL definitions

in a VSPEC description or VHDL package declaration (see Section 4.2.)3 LSL is used to define the

types and functions used in a VSPEC specification. An example of the includes clause is shown in

Figure 5 and its syntax is the keyword includes followed by a list of trait references. The syntax

of a trait reference is similar to a trait reference in LSL. It consists of the trait name followed by

an optional parameter list. The parameter list is used to rename LSL names to a name visible in

the VSPEC entity. Thus, an integer stack is included in a VSPEC specification with this includes

clause: includes Stack(integer, int_stack).

3 Architectures

The previous section briefly described hqwyHDL and VSPEC are used to define the requirements of

a single device in a digital system. The behavior of a device can also be described by decomposing

it into smaller pieces and connecting these pieces together to form an architectural description

of the device. This architectural description represents a refinement of the device's behavioral

VHDL/VSPEC description. VHDL provides convenient facilities for defining architectural descriptions.

This section briefly discusses these facilities and then describes how VSPEC uses them to form an

abstract architecture.

3.1 VHDL Structural Architectures

VHDL uses structural architectures to represent component composition. A structural architecture

describes h<yw sub-components are connected together to form a larger component. Figure 6 shows a

structural architecture for find. Unlike the behavioral representation in Figure 4, this architecture

indicates that a sort componeritxonnected to a search component implements the find function.

2Previous versions of VSPEC [1, 2, 7]'also contained a based on clause. The modified syntax of the includes clause
described here made the based on clause obsolete.

3Allowing includes clauses in package declarations is a change from previous versions of VSPEC. [1, 2, 7]

254

This structural architecture should perform the same function as that specified in the behavioral

description.

The VHDL component construct defines each component used in a structural architecture. The

structure architecture of find in Figure 6 declares two types of components that are used in this

architecture: sorter and searcher. One instance of each of these components (named bl and b2)

is created in the body of this architecture. The port maps of these component instances are used

to indicate how the components are connected together. In the structure architecture for find,

the system's input array is connected to the sorter input and the sorter output is connected

to internal architecture signal y. The signal y and system input k are inputs to the searcher

component. The output of the searcher is connected to the device output.

The VHDL configuration construct is used to bind entity-architecture pairs to component in-

stances. In this example, the test_struct configuration binds the bubble sort defined by entity

sort with architecture behavior to the bi instance of the sorter component. Similarly, the binary

search defined by entity bin_search with architecture behavior is bound to the b2 instance of

searcher. If there were other architectures for these two entities (such as a structural architec-

ture), a different configuration could have been specified stating that the components in structure

mapped to these architectures. Entirely different entities could even have been defined.

Since a structural architecture only defines dataflow between components, an additional mech-

anism must be provided to define when a component activates. VHDL accomplishes this with

sensitivity lists and wait statements. A sensitivity list contains a list of signals. Whenever an

event occurs on one of these signals, the process resumes execution. The behavior architecture

for sort is sensitive to its single input, while bin_search is sensitive to its input array and key

value. This means the sort component sorts its input only when new input arrives. Likewise, a

search occurs only when the key value or input array changes. A wait statement achieves the same

result by waiting on signal conditions or for a specific simulation time interval. In this example,

wait statements could replace sensitivity lists by removing the sensitivity lists and placing wait

9

255

architecture structure of find is
component sorter

port (input: in element_array;

output: out element_array);
end component;

component searcher

port (input: in element_array;

key: in keytype;

value: out element);

end component;
signal y: element_array;

begin

bl: sorter port map(input,y);
b2: searcher port map(y,k,output);

end structure;

entity sort is

port (input: in element_array;

output: out element_array);f

end sort;

architecture behavior of sort is

begin

process(input) begin

— Behavioral VHDL description
— of a bubble sort

end process;

end behavior;

entity bin_search is

port (input: in element_array;
key: in keytype;

value: out element);
end bin_search;

architecture behavior of bin_search is

begin

process (input,key) begin

— Binary search algorithm

— definition in behavioral VHDL
end pro cess; -

end behavior;

configuration test_struct of find is
for structure

for bl:sorter use entity

work.sort(behavior);

end for;

for b2:searcher use entity

;!;■■' work.bin_search(behavior);
i; end for;

' \fend for;

end test_struct;

input}

instance b1 ol
: sorter component
Input output

instance b2 of
searcher component
input

value

key

output

find entity

Figure 6: A VHDL architecture representing the composition of a sorting component and a binary
search component implementing the find function.

10

256

statements referencing the same signals at the end of the process definitions.

These constructs allow VHDL to support architecture representation. Component declarations

describe the inputs and outputs of each component type used in the architecture. Instances of these

components are created in the architecture body and configurations are used to map component

instances to an entity/architecture pair. Net lists indicate signal flow between component instances

while sensitivity lists or wait statements synchronize component actions.

3.2 VSPEC Abstract Architectures

VHDL structural architectures containing VSPEC annotated components specify abstract architec-

tures. The VHDL architecture remains unchanged indicating component instantiation and connec-

tions, However, a VHDL architecture is not assigned to each component instance in the architecture.

Instead, the configuration defines that each component references an entity with an architecture

called VSPEC. This signifies that at the current point in the design, the requirements of this com-

ponent are known (via the VSPEC description) but no implementation has been defined. 4

The structure architecture of find shown in Figure 6 becomes an abstract architecture by

referencing VSPEC definitions of the instantiated components. Figure 7 shows VSPEC entity defini-

tions for the sort and bin_search components in Figure 6. A new configuration, test_vspec, has

been defined for the find entity. It specifies that the VSPEC descriptions of sort and bin_search

should be used Instead of a specific architecture for these two entities. This configuration describes

an abstract architecture for the find component. Any implementation satisfying the VSPEC require-

ments Of sort and bin_search may be associated with the entity definitions. The architectures

specified in Figure 6 represent one such solution, but there are many others.

The VSPEC description of sort specifies the requirements for a sorting component: the input and

output must have all the same elements (i.e. output is a permutation of input) and the output must

■;:■:■■ 4This is different than leaving the entity open. When a VHDL entity is left open, the design is being deferred. At
the current point in the design, nothing is known about the function of the entity. In contrast, the requirements of a
VSPEC entity are known^ even though an implementation is not.

11

257

be in order. In a similar fashion, the bin_search specification states that whenever the component

input is sorted, the component must ensure that the output element contains the same key as the

k input and this element is an element of the input array. The requires and: ensures clauses of

these entities use two predicates (permutation and ordered) to define these requirements. These

predicates are defined in the LSL trait SortPredicates which is included in both VSPEC entities.

requires ordered(input);
.ensures output = e iff (e.key=k and

element_of(e,input));
end bin_search;

configuration. test_vspee of find is
for structure

for bl:sorter use entity
work.sort(VSPEC);

end for;
-.;-:.;:: ;f or b2: searcher use entity

work.bin_search(VSPEC);
end for;

end for;
end test_struct;

entity sort is
port (input: in element_array;

output: out element_array);
includes SortPredicates;
modifies output;
sensitive to input'event;
ensures

permutation(output'post,input);
ordered(output'post);

end sort;

entity bin_search is
port (input: buffer element_array;:

key: in keytype;
output: out element);

includes SortPredicates;
modifies value;
sensitive to k'event or input'event;

Figure 7: VSPEC definitions for the sort and bin_search components in the find architecture.

Although a VHDL architecture referencing vsPEG definitions defines components and intercon-

nections, additional information must be added to specify when the VSPEC components activate.

In traditional sequential programming, a language construct "executes" following termination of

the construct preceding it. For correct execution, a construct's pre-condition must be satisfied

when the preceding construct terminates. In hardware systems, components exist simultaneously

and behave: as independent processes. Nqipredefined execution order exists, thus there is no means

for determining when a component's pre-condition should hold. Consider the find example. The

pre-condition of bin_search need hold only when sort has completed its transformation. At all

other times, bin_search need only maintain its state.

VHDL provides sensitivity lists and wait statements to synchronize entity execution, VSPEC

12

258

achieves the same end using the sensitive to clause. The sensitive to clause contains a pred-

icate called the activation condition indicating when an entity should begin executing. Effectively,

the activation condition defines when a VSPEC annotated entity's pre-condition must hold. When

the sensitive to predicate is true, the pre-condition must hold and the implementation must

satisfy the post-condition. When the sensitive to predicate is false, the entity makes no contri-

bution to the next state of the system. Like the requires and ensures clauses, the sensitive to

predicate is defined over entity port definitions and variables defined in the state clause.

Recall that the structural VHDL architecture for find (Figure 6) specified that the sort compo-

nent should only activate when its input changes and the binary search component activates when

one of its inputs changes. Without the sensitive to clause, specifying this behavior in VSPEC

would not be possible. Note the sensitive to clauses defined in the VSPEC description of find in

Figure 7. In VSPEC, a signal's ' event attribute is true if the signal changed value from the previous

state. Thus, both components activate whenever any of their inputs change value.

3.3 Architecture Model Semantics

The previous section provided an informal description of how VSPEC can be used to define an ab-

stract architecture. This section provides a more precise, formal definition of the concepts presented

above. First, the state of a VSPEC description is defined. After this, a precise definition of how the

sensitive to,requires and ensures clauses define a transformation over this state is presented.

The section concludes with a-simple example that illustrates these points.

3.3.1 State Definition

The |pte definition for an entity is a map from port, signal and variable names to their values.

There are three different views of an entity state: (1) abstract; (2) component; and (3) concrete

state. :.The abstract state is defined by a VSPEC description of an entity. The component state is

the state of a single component in an abstract architecture and the concrete state represents the

13

259

state of all components of an abstract architecture.

The abstract state includes the ports and state variables of an entity. The vsPECjsensitive

to, requires and ensures clause predicates are defined over elements of the abstract state of

the entity. The component state applies to an entity included as a component in a structural

architecture. The component state is formed by taking the entity's abstract state and subjecting

it to the renaming imposed by the signals the component is connected to in the architecture.

This component state is used to construct: the concrete state of the structural architecture. The

concrete state is the union of the component states for all of the components in an architecture.

This structural architecture represents a refinement of the vsPEC definition of the entity. There is

an abstraction function mapping the concrete state of the structural architecture to the abstract

state defined by the VSPEC description of the entity; the structural architecture refines.

Consider the VSPEC entity in Figure 8. The abstract state of the three entities in this figure are

the inputs, outputs and state variables of the entities. Thus, the abstract states of these entities

are:

ABSTRACTsysitm = {sys-in H-> io,sys^.out i-s- ii,sysstate ■-* ig}

ABSTRACMcom.fi = {inl >-» is,result^ i^,bl-.state *-+ i5}

ABSTRACTcamV2— {inl H* ie, in2 *-*' iq, result i-*- i8, c2state h-> ig]

where io, ii, ...ig are all integers. As shown, the state is a map from names to values. However, for

the purpose of clarity we will show just the names that form the various states throughout the rest

of this paper.

Within the struct architecture for the system entity, the A's component state (the first instance

of compl} is found by taking compl's abstract state and performing the renaming defined by the

signals the component is connected to. In this case, inl is connected to sys_in and result is

connected to signal x. Thus, in the context of the struct architecture, inl of component instance

A should be replaced by sys_in and result replaced by x. A similar renaming can easily be found

for the inputs and outputs of the other components in the struct architecture. The renaming for

14

260

entity system is

port (sys_in : in integer;

sys_out : out integer;);

state (sys_state : integer;);

end system;

entity compi is

port(inl : in integer;

result : out integer;);
state (cl_state : integer;);

end compl;

entity comp2 is

port(inl, in2 : in integer;

result : out integer;);

state (c2_state : integer;);
end comp2;

architecture struct of system is
component compl:

port (inl : in integer;

result : out integer;);

end component;

component comp2

port (inl, in2 •: in integer;

result : out integer;);
end component;

signal x, y : integer;

begin

A : compl port map(sys_in,x);
B : compl port map(x,y);

C : comp2 port map(x,y,sys_out);
end struct;

sys_in

compl
instance A

ln1 result

d state

sys_state

system

entity :

compl

instance B

inl result

c1 state

comp2
instance C

Inl result

in2

c2 state

sys_out

Figure 8: Mample VSPEC entity used to explain the differences between abstract, component and
concreteistate.

15

261

the other components is shown in the definition A and B's component states below.

Since the struct architecture has more than one instance of the compi entity, the state variables

of compl must be renamed to form the component state. This renaming avoids conflicts when

forming the concrete state of the struct architecture. To simplify matters, we will always rename

a component's state variables even if there is only one instance of an entity in the architecture. A

number of renaming functions could be chosen, but the one used here is the state variable name in

the abstract state subscripted with the instance label from the architecture. The component states

of the components in the struct architecture are:

COMPONENTA = ABSTRACTcomjli[inlIsys-in, result/x^lstate/clstateA]

— {sys-in,x,clsta,teA}

COMPONENTS = ABSTRACTcompi [inl /x, result/y, c 1 state/clstates]

= {x, y, cl—states}

COMPONENTc = ABSTRACTc0mp2[«rcj,:)'x^vn2/'y, result/'sys-out, c2 state/c2statec]

— {x,y,sys-out,c2 state g}

We are now ready to form the concrete state of the struct architecture for the system en-

tity. The concrete state is simply the union of the component states for each component in the

architecture:

CONCRETMiructsystem =:■ COMPONENTA ö COMPONENTS II COMPONENTc

= {sys-in,sys-jout,x,y,clstateA,cl states, c2statec}

Since an abstract architecture represents a refinement of the requirements specified by VSPEC,

an abstraction function can be defined to map the concrete state of the architecture the abstract

state defined by the VSPEC description.

Together, the abstract, component and concrete states represent the state of a VSPEC com-

ponent. The examples in Sections 3.3.3 and 4 use these definitions to describe how a VSPEC

description behaves.

16

262

3.3.2 Transform Definition

The transform performed by a VSPEC architecture is defined by the sensitive to, requires and

ensures clauses. The formal definition of the requires and ensures clauses was discussed in

Section 2. It is very similar to the transform defined by a traditional Larch interface language. As

described in Section 3.2, the sensitive to clause is used to synchronize components and define

when the requires clause predicate must be satisfied.

Formally, synchronization is easily represented using a traditional process algebra such as

CSP [11]. Events are defined as changes in the state of the entity. Assume that F(St) is a func-

tion between two states of entity P that implements the requirements specified in P's requires

and ensures clauses (i.e. F(St) satisfies Equation 2). The process defined by entity P with a

sensitive to predicate of S(St) in any state St is:

Pst ;= * : SEN -> PF{St) (3)

where SEN is the set of states that satisfy P's sensitive to clause: SEN = {t\S(t)}. Thus, a

process in state St first waits for its sensitive to clause to be satisfied and then behaves like the

same process in the state defined by applying F to the current state.

Equation 3 defines a CSP process that describes the behavior of a single VSPEC entity, csp's

concurrency operator (||) is used to define a process that describes the behavior of an architecture

of VSPEC components. Let PQ,PI, ..., Pn be the processes represented by Equation 3 for the set of

VSPEC component instances in architecture V. The process that represents architecture V is:

1 V=Po\\Pl ||...|| Pn (4)

Thus, ^ach component in the architecture executes in parallel. Since a component activates only

when |ts sensitive to clause predicate is true, this predicate is used to synchronize component

execution.

17

263

entity example is entity cl is
port(i: in integer; o: out integer); port (x: in integer; z: out integer);

end example; modifies z;
sensitive to x'event;--:y

architecture structural of example is . requires Ii(x);
component cl ensures Oj(x, z'post);

port(input: in integer; end cl;
output: out integer);

end component; entity c2 is ...
component c2 . port (x: in integer; z: out integer);

port(input: in integer; modifies z; j
output: out integer); : sensitive to x'event;

end component; "requires l<>{x);
begin ensures Ozix,z'post);

bl: cl port map(i.y); end c2;
b2: c2 port map(y,o);

end structural;

Figure 9: Specification of two components connected serially.

3.3.3 Formal Model Example

This section presents a simple example to explain How the concrete state of a VSPEC architecture

changes as its inputs are modified by external components. Consider the architecture shown in

Figure 9. The abstract, component and concrete: state of the elements of this architecture are:

ABSTRACT*: = {x,z}

ABSTRACT^ = {x,z}

COMPONENT* = {i,y}

COMPONENT^ = {y,o}

CONCRETEsirUcura.iexample = {i,o,y}

The transformation: performed by an architecture is defined from the components comprising

it. Formally, the component requirements for cl and c2 are defined as:

V x : integer, 3 z : integer • lt (x) =>• Oi (x, z'post)

Vx : integer, 3 z : integer ■ Is(x) => Oz(x, z'post)

The renaming defined by the architecture that is used to create the component state from the

abstract state of an architecture can also be applied to these two equations. In this' example, this

18

264

defines the following logical requirements for cl and c2:

V i : integer, 3 y : integer • It (i) => Oi {%, y'post)

Vy : integer, 3 o : integer ■ I2(y)=$> Os{y,o'post)

The renaming function is also applied to the modifies, state and sensitive to clause of cl

and c2. After this renaming, the logical definitions of each component are expressed in the same

name space as the concrete state of the system.

Assume that a, b and c are integer constants and that f(x) and g(x) are functions that satisfy

requirements for cl and c2 respectively. Let the initial concrete state of the system be S0 = {i i-+

a,y i-> b,o^ c} and let i'event be true and y'event be false. This means that el's sensitive to

clause is satisfied and el's pre-condition must hold, cl will then make its post-condition hold in

the next state. Instantiating the requirements for cl gives:

3 z -.integer • It (c) =?> Ot (a, z) (5)

Knowing that f(x) satisfies el's requirements and assuming It (a) is true implies that Oi (a,f(a))

is also true. Additionally, y'event is known to be false so c2 maintains its state and o does not

change in the next state. Thus, one potential next state for this system is Sj = {i H a,j/ H

/(a), o i-»- c}. Because: the function / is one of potentially many functions satisfying cl, we cannot

claim that this is the only possible next state.

Since y changed values from S0 to Sj, the predicate y'event is true in S^ Additionally, i did

not change values in «S; implying that i'event is false in «S;. Thus, only component c2 activates in

state Si.

Using the same reasoning used for Si, values for S2 can be produced. Assuming that f{a)

satisfies I2(f(a)) and knowing g(x) satisfies c2's requirements makes Os(f(a),g(f(a))) true. The

input value i has not changed, cl maintains its state implying y does not change, and g(f(a))

satisfies c2's output condition. Thus, Ss = {i H-> a,y t-+ f(a),o ■-► g(f(a))} is a potential next

state for the: system.

19

265

An interesting exercise is defining what happens when the input value i changes between states

So andSi. Assume that i changes value from a to d making Sj — {i i-* d, y i-> /(a), o.»-> c}. Now

i'event is true in Sj and both components execute on values from Si. In this case, S% = {i >->■

d, V >-* f(b), o H-> g(f(a))}. Note the value of o does not change from the previous example because

the next state is defined only on variables defined in the current state. Using this model eliminates

difficulty caused by instantaneous feedback and "pipelined" update functions, VHDL solves this

same problem by allowing an infinite number of delta delays between major clock cycles of the

simulation.

3.4 Generating Proof Obligations

The VSPEC formal model can be used to verify that a system's abstract architecture description

satisfies the requirements described by the VSPEC specification of the system. This verification

provides evidence that the abstract architecture description satisfies the abstract VSPEC specifica-

tion. Finding such evidence depends on: (lj having the system requirements / and O; and (2)

relating a concrete state produced by the abstract architecture with the abstract state specified for

the system. A system's VSPEC description provides /land 0. The abstraction function from the

concrete to the abstract state provides the means for comparing the abstract and concrete states.

Weak bisimulatiqn [19] is used as the correctness criteria when attempting to verify that an

abstract architecture satisfies a VSPEC description. As shown in Figure 10, weak bisimulation

requires that some sequence of state changes in the concrete state of the system result in the

correct single sta|e change in the absträctsstate. Only the first and last of the concrete states are

significant. The system may pass through any concrete state as long as the abstraction function

applied to the final concrete state results in the correct abstract state as defined by the abstract

specification.

In CSP, the sequence of states a VSPEC entity passes through is called a trace. A CSP trace of

process P is ä finite;;Sequence of symbols representing the events processed by P. VSPEC events

20

266

Abstract State

Concrete State

Figure 10: Concrete state changes associated with a single abstract state change.

are changes in state and they are represented in a trace by the state the entity changes to. Thus,

a VSPEC entity satisfies the weak bisimulation criteria if two conditions hold for all traces of the

abstract architecture. The first condition is that the abstraction function applied to the initial

element of each trace must result in an abstract state that satisfies the abstract pre-condition. The

second condition is that the final element of each trace mustsfeither have an abstract projection

that satisfies the abstract post-condition or there must be some legal sequence of states that can

be appended to the trace to form another trace. This ensures that the concrete state eventually

reaches a state where the abstract specification is satisfied.

4 Examples

This section presets two examples that illustrate how VSPEC can be used to describe an abstract

architecture. The first example is a simple tri-state buffer description that is used to define a simple

2 input multiplexor. This example illustrates what happens when multiple sources drive a single

value in a VSPEC abstract architecture. The second example is the description of a simple CPU

called the Move Machine. This example illustrates shows a VSPEC description that is decomposed

into an abstract architecture.

21

267

entity buffer is
port (input: in integer;

control: in boolean;
output: out integer);

sensitive to control'event or input'event;
ensures control implies output'post = input;

end buffer;

Figure 11: VSPEC description of a simple buffer.

entity mux is

port (inl, in2: in integer;

select: in boolean;

output: out integer);

sensitive to inl'event or

in2'event or select'event;
ensures

(select and output'post = inl) or
(not select and output'post = in2);

end mux;

architecture struct of mux is
component buffer

port (input: in integer;

control: in boolean;

output out integer);
end component;;

component not ■
port (input: in boolean;

output: out boolean);
end component;

signal select_inv : boolean;

begin

bl: buffer

port map(inl;select,output);
b2:- buffer

port map(in2,select_inv,output);
:ni: not

■:;; port map (select,select, inv);
end:-struct;

Figure 12: VSPEC and abstract architecture description of a 2-input mux.

4.1 Buffer and Multiplexor Example

A VSPEC description of a simple buffer Is shown in Figure 11. In this example, input and output

are both integers, but the specification could also be used if input and output were of any other

type. When control is true, this device passes input to output. When control is false, the

device places no requirements on the value of output in the next state. The specification allows for

output to maintain its current value in the next state, but the specification also allows an external

device to change the value of output. Consider using this buffer as a component in the abstract

architecture description of the multiplexor in Figure 12.

This figure shows both a VSPEC description of a multiplexor as well as a refinement of this

description into an abstract architecture. The VSPEC entity mux is a straightforward description of

22

268

a multiplexor. The struct architecture uses two instances of buff er and a not gate to decompose

the multiplexor into an abstract architecture.

Careful examination of this description reveals a very subtle but important point about VSPEC

specifications and multiply driven signals. If a component description does not restrict the value

of an output signal in the next state, other components in the system can still change the value

of this signal without violating the component description. Suppose that the concrete state of the

architecture is:

CONCRETEstructmux = {inl •-* 7, in2 \-+ 3, select >-► true, output i-* 7, select-inv H* false}

so that the abstract state of buff er instance bl is:

ABSTRACT^ = {input •-» 7, controls true, output i-> 7}

Assume that some external device changes the select input to false. This causes buffer

instance bl's control input to change to false which activates the buffer. This device must now

make its ensures clause true in the next state. Since control is false, the ensures clause will be

true in the next state for any value of output. Thus, buffer instance b2 can change the output

signal of the architecture to 3 without violating bi^specification. The next state of the device is:

CONCRETEstrui:imux = {ml \-+ 7, in2 i-» 3, select:H false, output H-J- 3, selectJ,nv i-> true]

Thus, the output signal has changed values even though the bl buffer instance does not cause it to

do so. Even though bl does not force ä change in state, it does not prohibit one either. An external

device (buffer instance b2) has caused the output signal to change values. The specification of bl

allows this change to occur.

This description may not seem correct to an experienced VHDL user because the output signal

is driven by two sources, but no resolution function is specified. Although this is illegal in VHDL, it

is allowed in VSPEC. In most cases, the CSP statement that defines a VSPEC entity's contribution to

thenext state of the system will define a single value for every signal, but a VSPEC description may

allow more than one value for a specific signal. This is legal VSPEC because VSPEC is a specification

language, not a simulation language like VHDL. This implies that a VSPEC specification does

23

269

not need to deterministically define a single value for every signal in the system. It is certainly

possible to do this with VSPEC by defining the requirements of resolution functions, but a VSPEC

specification could allow a signal to be driven to two (or more) different values. In these cases, a

designer implementing the specification may chose to drive the signal to any of its allowed values.

4.2 The Move Machine

A more complex example is the specification of a Move Machine [22]. The Move Machine is a simple

CPU that moves data from one memory location to another. It uses four instructions: jump, load

register from memory, store register to memory, and halt and four addressing modes: absolute,

immediate, indirect and relative. Although the Move Machine is a simple device, its structure

reflects how a more complex system might be represented.

The first step in specifying the Move Machine is representing it as a simple instruction interpreter

(Figure 13). At this level, only one VSPEC annotated entity describes the execution of each

instruction and addressing mode. This entity contains state variables to store the current register

contents and the value of the. instruction pointer. Thesensitive to clause states that the machine

activates when its start;or;reset input is on or when-the value of the instruction pointer changes.

The rather complex ensures clause predicate defines how the machine behaves for each instruction

and addressing mode. An external entity would use this component by first applying the reset

signal and then the start signal. This causes the machine to begin executing the instruction

in memory location 0. The result of each instruction (except halt) cause the contents of the

instruction pointer to change which activates the machine again in the next state. This continues

until a halt instruction is processed, causing the machine to stop.

One thing to note about this specification is the use clause on the first line. In VHDL, types

and functions can be declared in separate packages. These packages are then included in entity and

architecture descriptions with the use clause. The mm_types package referenced in this example is

shown in Figure 14. An interesting aspect of this package is the use of incomplete types to specify

24

270

use work.mm_types.all;

entity nun is

port (reset,start : in boolean;

mem: inout memory);

state (ip : address;

reg : regfile);

sensitive to start or reset or

ip'event;

ensures

(reset and ip'post = 0) or

(not reset and

((ins(mem(ip)) = jump and

ip'post=addr(mem(ip)))

or (ins(mem(ip)) = load and

((am(mem(ip)) = ab and

reg(rnum(mem(ip)))'post =

addr(mem(ip))) or;

(am(mem(ip)) = imm and

reg(rnum(mem(ip)))'post =

mem(ip +1)) or
(am(mem(ip)) = ind and
reg(rnum(mem(ip)))'post =
mem(addr(inem(ip)))) or :

(am(mem(ip)) = rel and
reg(rnum(mem(ip)))'post =
mem(ip + addr(mem(ip))))))

Figure 13: The Move Machine requirements represented as an instruction interpreter.

or (ins(mem(ip)) = store and
((am(mem(ip)) = ab and

mem(addr(mem(ip)))'post =
reg(rnum(mem(ip)))) or

(am(mem(ip)) = imm and
mem(ip +1) =
reg(rnum(mem(ip)))) or

(am(mem(ip)) = ind and
mem(mem(addr(mem(ip)))) =
reg(rnum(mem(ip)))) or

(am(mem(ip)) = rel and

mem(ip + addr(mem(ip))) =

reg(rnum(mem(ip)))))))

and ((ins(mem(ip)) = store or

ins(mem(ip)) = load) and
((am(mem(ip)) /= imm and

ip'post = ip'post+1)
or (am(mem(ip)) = imm and

ip'post = ip'post+2))));
end mm;

25

271

package mm_types is
type address;
type word;
includes Instruction(word,address,integer);
type control is (fetch,decode,execute,]ialt);
type memory is array(0 to 256) of word;
type regfile is array(0 to 15) of word;

end mm_types;

Figure 14: Package declaring types used in the Move Machine.

address and word, VHDL uses incomplete types to allow references to a type before the type is

completely defined (such as in an access type). One use of this is to allow a record to contain a

pointer to another record of the same type (i.e. to construct a list).

In VSPEC, incomplete types are used for a slightly different purpose. The type definitions

for address and word are incomplete because no implementation is defined. They are declared

to be types, but no additional information is provided. These incomplete types will be given

characteristics by the specification, but ho specific implementation is implied or mandated. Thus,

the designer must select an implementation at a lower abstraction level. Using incomplete types

allows the designer to specify a type's characteristics without specifying its implementation.

The characteristics of the address and word types are defined in the LSL Instruction trait.

This trait is included in mm types using a yspBC includes clause (see Section 2) and the trait is

shown in Figure 15. The Instruction trait provides definitions for conversion functions that allow

instructions, register numbers and addresses to be obtained from memory words. In the final format

of the Move Machine instructions (not shown in this paper), this would be implemented by defining

which bits of a memory word encode the instruction, register number and address. However, when

specifying the initial requirements of the device, such details should not be considered. All that

must be specified is that instructions, register numbers and addresses can be obtained from memory

words. This is exactly what the LSL description allows us to say.

Once the Move Machine's initial requirements are defined, the device can be broken up into an

abstract architecture and each of the components can be synthesized individually. For a CPU such

26

272

Instruction(W,A,N): trait

includes
Natural(N)

mode enumeration of abs, imm, ind, rel

instruction enumeration of halt, jump, load, store

introduces
am: W —* mode
addr: W —► A
ins: W —+ instruction
rnum: W —► N

Figure 15: LSL support functions for treating memory contents as instructions. Basic types and
conversions are denned.

as the Move Machine, one such architecture is the canonical fetch-decode-execute structure. An

instruction is retrieved, the addressing modes are decoded and dereferenced, and the instruction is

executed on its operands. Effectively, the Move Mächine is now three components that execute in

sequence.

Figure 16 shows the fetch-decode-execute architecture for the Move Machine. The signals mem,

reg, IP, IR, EA and CNTL exchange memory, registers and control values between components.

The requires and ensures clauses for each component describe transformations performed on

memory and register values while the sensitive to clauses uses the control value indicates what

component(s) should be active.

Each component's sensitive -to clause indicates that it should be active when its execution

phase begins. As with the instruction interpreter, the machine starts by turning on the reset

signal. This causes the fetch component to activate and sets the instruction pointer to 0. After

reset turns off, all components are inactive until the start signal is asserted, fetch's sensitive

to clause is the only sensitive to clause satisfied by this action, so fetch is the only component

that activates. All other components have no affect on the concrete state of the architecture. The

fetch iComponent retrieves the Current instruction from memory and places it in the instruction

register (IR). It also sets the cütl signal to decode.

27

273

use work.mm_types.all;

architecture mm_fde of mm is

component fetch

port (reset,start : in boolean;

mem: in memory;

ip : inout address;

ir : out word;

cntl: inout control);

end component;

component decode

port (mem: in memory;

ip: in address;

ir: in word;

ea: out address;

cntl: inout control);

end component;

component execute

port (mem: inout memory;

reg: inout registers;

ea: in address;

cntl: inout control);

end component;

signal CNTL: control;

signal IP : address;

signal IR : word;

signal EA : address;

signal reg : regfile;

begin
bl: fetch port map (reset,start,

mem,IP.IR,cntl);

b2: decode port map (mem,IR,EA,CNTL);

b3: execute port map (memi,reg,EA,CNTL);

end mm_fde;

use work.mm_types.all;

entity fetch is

port(reset,start : in boolean; :

mem: in memory;

ip : input^address ;^ ;:->-..-....
ir : out word;

cntl: inout control);

sensitive to start or reset or

cntl=fetch;

modifies ir,cntl;

requires truej

ensures.:; ;

(reset and ip'post =0)

or (not reset and
: -ir' post=mem (ip)

liiand cntl'post=decode);

end fetch;

use work.mm_types.all;

entity decode is

port (mem: in memory;

ip: in address;

ir: in word;

ea: out address;

cntl: inout control);

sensitive to cntl=decode;

modifies ea,cntl;

requires true;

ensures

: ((am(ir) = ab and

ea'post=addr(ir)) or

(am(ir) = imm and

ea'post=ip+l) or

(am(ir) = ind and

ea'post=mem(addr(ir))) or

(am(ir) = rel and

ea'post=ip+addr(ir)))

and cntl,post=execute;

end decode;

use work.mm_types.all;

entity executels

port(mem: inout memory;

ip: inout address;

:; ir: in word;

reg: inout regfile;

ea: in address;

cntl: inout control);

sensitive to cntl=execute;

modifies mem,reg,ip,cntl;

requires true;

ensures

(ins(ir) = jump and

ip'post=addr(ir) and

cntl'post=fetch)

or (ins(ir) = load and

reg(rnum(ir))'post=mem(ea) and
cntl'post=fetch and

((am(ir) = imm and

ip'post = ip+2) or
(am(ir) /= imm and

ip'post = ip+1)))

or (ins(ir) = store and

mem(ea)'post=reg(rnum(ir)) and

cntl'post=fetch and

((am(ir) = imm and

ip'post = ip+2) or

(am(ir) /= imm and

ip'post = ip+2)))

or (ins(ir) = halt and

cntl'post=halt);

end execute;

Figure 16: High level fetch-decode-execute architecture for the Move Machine CPU

28

274

The only component whose sensitive to clause is satisfied at this point is decode. This

component calculates the effective address based on the addressing mode specified by the instruction

in the IR and sets the cntl signal to execute. The execute component then manipulates the

registers and memory based on the current instruction. When a load, store or jump instruction

is executed, execute sets the cntl signal to fetch which causes the fetch component to activate

and the process starts again. If the halt instruction is processed, execute sets cntl to halt. This

makes all three component's sensitive to clauses false and the concrete state of the architecture

does not change again until something (such as activating reset) outside of nun changes it.

5 Related Work

5.1 Software Architecture

The research area most closely related to abstract architecture representation in VSPEC is software

architecture [8]. Research in this field has led to the development of several architecture description

languages, including UniCon [23], WRIGHT [3, 4] and RAPIDE [16, 17]. Each of these languages

allow the definition of components and connectors to define a software architecture. This is similar

to the VHDL notion of a structural architecture described in this paper.

Shaw's UniCon language [23] is one example of an architecture description language. A UniCon

description consists of component and connector definitions. Each of these definitions gives the

type (such as Filter or Process for components and Pipe or FilelO for connectors), association units

(component players and connector roles) and an implementation for the component or connector.

The primary product of the UniCon compiler is Odinfiles, something similar to makefiles that can

be used to construct executables for the described architecture. Thus, one of the main products of

a UniCon description is a facility that is used to construct an executable version of the described

architecture. This is very different from a VSPEC abstract architecture which is used to verify

that the class of solutions defined by the architecture implements the requirements specified by the

29

275

VSPEC description of the component.

The WRIGHT architecture description language [3,4] by Allen and Garlanis of particular interest

when discussing abstract architectures in VSPEC. A WRIGHT description consists of a collection

of components interacting via instances of connector types. Each part of a WRIGHT description

is denned using a variant of CSP [11]. Unlike VSPEC's use of CSP to define only communications

between components, WRIGHT descriptions use CSP to define the behavior of components as well.

WRIGHT'S CSP descriptions define the sequence of events that occur in a component or connector.

Components and connectors interact when one component/connector observes an event provided

by another. This may cause the second component/connector to provide events that cause further

interactions. These interactions are all described using CSP.

RAPIDE [16, 17] is an executable architecture description language designed for prototyping

architectures of distributed systems. Ä RAPIDE architecture consists of a set of module specifica-

tions (called interfaces), a set of connection rules defining communication between interfaces and

a set of formal constraints that define legal patterns of communication. A RAPIDE architecture

is executed to produce a partially ordered set of events (poset) that represents the dependencies

between events in the architecture. The RAPIDE tools can then verify this poset does not violate

the formal constraints defined in the architecture. A major difference between RAPIDE and VSPEC

is that VSPEC descriptions are not executable. They are intended for formal analysis.

5.2 Other VHDL-Relätid Specification Languages

Odyssey Research Associates (ORA) is developing Larch/VHDL, an alternative Larch interface

language for VHDL [13]; Larch/VHDL is targeted for formal analysis of a VHDL description and

ORA is defining a formal semantics for VHDL using LSL. The LSL representations are used in a

traditional theorem prover to verify system correctness. Larch/VHDL annotations are added to a

specific VHDL description to represent proof obligations for the verification process. In contrast to

this, a VSPEC abstract architecture represents the requirements of a class of solutions that satisfy

30

276

a specification (also given in VSPEC).

Augustin and Luckham's VAL [6] is another attempt to annotate VHDL. The purpose of a

VAL annotation to a VHDL description is to document the design for verification, VAL provides

mechanisms for mapping a behavioral description to a structural description. Two VAL/VHDL

descriptions of a design can be transformed into a self-checking VHDL program that is simulated

to verify that the two descriptions implement the same function. This differs from VSPEC because

it does not allow the description of a class of solutions that implement a specification. Instead, it

allows the verification that a structural description correctly maps to a behavioral description for

the entity.

5.3 Larch Interface Languages

Larch interface languages have been developed for a variety of programming languages, including

LCL [9], Larch/C++ [15] and LM3 [14], interface languages for C, C++ and Modula-3, respectively.

Each of these languages allow the description of the pre- and post-conditions for procedures and

functions in a sequential programming language. The portions of these languages that allow this

type of specification (Le. requires, and ensures clauses) are also found in VSPEC where they are

used to specify the transformation performed by a single component. However, since C, C++ and

Modula-3 are sequential languages, their Larch interface languages do not have to deal with how the

Larch-specified procedures and functions interact when two procedures are executing concurrently

as is the case with VSPEC entities. At the present time, we are not aware of other work in the Larch

community where pre and post-conditions are used to specify the behavior of components in an

abstract architecture.

31

277

6 Conclusion

6.1 Summary

The ability to evaluate architectural decisions early in the design process enhances overall design

quality by allowing architectural errors to be discovered when they are less expensive to fix. Un-

fortunately, VHDL does not allow evaluation until a simulatable model exists. For many complex

systems, simulatable models appear late in the design process making architectural errors difficult

to correct. An alternative to simulation for evaluating architectural decisions is formal analysis of

abstract architectures at the requirements level. An abstract architecture is a set of interconnected

components where the requirements of each component are known but the implementation is not.

This paper presented VSPEC'S support for describing and evaluating abstract architectures during

requirements specification.

A VSPEC abstract architecture is formed by instantiating each component in a VHDL structural

architecture with a VSPEC entity. The VSPEC description of an entity includes a pre-condition,

post-condition and activation condition that describe the entity's functional requirements. If the

current state of the system satisfies the activation condition for one of the components in the

abstract architecture^; that component's pre-condition must hold and the component must satisfy

its post-condition in the next state. A refinement of a VSPEC entity can be compared with the

VSPEC specification using weak bisimulation. If some sequence of state changes in the refinement

yields the correct single state change in the higher-level description, weak bisimulation holds. This

method can be used to formally determine if a VSPEC abstract architecture is a refinement of the

VSPEC description of the entity it implements.

6.2 Status and Limitations

VSPEC provides a specification capability most appropriate for high levels of abstraction. It is

anticipated that designers will;represent system requirements with VSPEC, gradually refining re-

32

278

quirements into architectures and eventually a VHDL design. During requirements specification

when a designer is defining the essential requirements of a system, VSPEC is useful for evaluating

the impact of architectural decisions. When design details are available, VHDL simulation is a

more suitable analysis activity. Although VSPEC can model design detail, formal analysis is far less

pragmatic than VHDL simulation in such situations.

A potential limitation to the VSPEC approach is verifying the refinement of VSPEC require-

ments into VHDL design representations. Formalizing the tie between VSPEC and VHDL to support

verification and comparison with simulation results is the subject of current investigations. In

addition, techniques for automatically synthesizing VHDL from VSPEC are currently under develop-

ment [21, 20]. Studies of error analysis reports for safety-critical software systems suggest that over

90% of safety related errors arise from incorrect or incomplete specifications, not transformation

of requirements into implementations [18]. This suggests that the use of techniques such as those

proposed here are warranted even before a complete verification path between VSPEC and VHDL

exists.

References

[1] ALEXANDER, P., BARAONA, P., AND PENIX, J. Using Declarative Specifications and Case-
Based Planning for System Synthesis. Concurrent Engineering: Research and Applications 2,
4 (1994).

[2] ALEXANDER, P., BARAONA, P., AND PENIX, J. Application of Software Synthesis Tech-
niques to Composite Systems. In Computers in Engineering Symposisum of the ASME ETCE
(Houston, TX, January 1995).

[3] ALLEN, R., AND GARLAN, D. Formalizing Architectural Connection. In Proc. Sixteenth
International Conference on Software Engineering (May 1994), pp. 71-80.

[4] ALLEN, R., AND GARLAN, D. A Case Study in Architectural Modelling: The AEGIS System.
: In Proceedings of the 8th International Workshop on Software Specification and Design (March

1996).

[5] ASHENDEN, P. The Designers Guide to VHDL. Morgan Kaufmann Publishers, Inc, San
Mateo, CAj 1996.

33

279

[6] AUGUSTIN, L., LUCKHAM, D., GENNART, B., HUH, Y., AND STANCULESCU, A. Hardware
Design and Simulation in VAL/VHDL. Kluwer Academic Publishers, Boston, MA, 1991.

[7] BARAONA, P., PENIX, J., AND ALEXANDER, P. VSPEC: A Declarative Requirements Spec-
ification Language for VHDL. In High-Level System Modeling: Specification Languages, J.-M.
Berge, 0. Levia, and J. Rouillard, Eds., vol. 3 of Current Issues in Electronic Modeling. Kluwer

Academic Publishers, Boston, MA, 1995, ch. 3, pp. 51-75.

[8] GARLAN, D., AND SHAW, M. An Introduction to Software Architecture. In Advances in
Software Eng. and Knowledge Eng., V. Ambriola and G. Tortora, Eds., vol. 2. World Scientific,
New York, 1993, pp. 1-39.

[9] GUTTAG, J. V., AND HORNING, J. J. Introduction to LCL, A Larch/C Interface Language.
Tech. Rep. 74, Digital Equipment Corporation Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301, July 1991.

[10] GUTTAG, J. V., AND HORNING, J. J. Larch: Languages and Tools for Formal Specification.

Springer-Verlag, New York, NY, 1993.

[11] HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
1985.

[12] IEEE Standard VHDL Language Reference Manual. New York, NY, 1994.

[13] JAMSEK, D., AND BICKFORD, M. Formal Verification of VHDL Models. Technical Report
RL-TR-94-3, Rome Laboratory, Griffiss Air Force Base, NY, March 1994.

[14] JONES, K. LM3: A Larch Interface Language for Modula-3. A Definition and Introduction.
Version 1.0. Technical Report 72, DEC Systems Research Center, June 1991.

[15] LEAVENS, G. T. Larch/C++ Reference Manual. Available at
ftp://ftp.cs.iastate.edu/pub/iarchc-l—|-/lcpp.ps.gz., 1995.

[16] LUCKHAM, D., KENNEY, J,, AUGUSTIN, L., VERA, J., BRYAN, D., AND MANN, W. Spec-
ification and Analysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering 21, 4 (April 1995), 315-355.

[17] LUCKHAM, D., AND VERA, J. An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering 21, 9 (September 1995), 717-734.

[18] LUTZ, R. Analyzing software requirements errors in safety-critcal embedded systems. Tech.
Rep. 92-27, Department of Computer Science, Iowa State University, 1992.

[19] KIILNER, R., TOFTE, M., AND HARPER, R. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

[20] PENIX, J., AND ALEXANDER, P. Design representation for automating software component
reuse. In Procedings of the first international workshop on Knowledge-Based systems for the
(re)Use of Program libraries (Nov. 1995).

34

280

[21] PENIX, J., BARAONA, P., AND ALEXANDER, P. Classification and retrieval of reusable

components using semantic features. In Procedings of the 10th Knowledge-Based Software
Engineering Conference (Nov. 1995), pp. 131-138.

[22] ROY, J., KUMAR, N., DUTTA, R., AND VEMURI, R. DSS: A Distributed High-Level Synthesis
System. IEEE Design&Test of Computers (June 1992), 18-32.

[23] SHAW, M., DELINE, R., KLEIN, D., ROSS, T., YOUNG, D., AND ZELESNIK, G. Abstrac-

tions for Software Architecture and Tools to Support Them. IEEE Transactions on Software
Engineering 21, 4 (April 1995), 314-335.

35

281

APPENDIX Q:

VSPEC: A declarative specification methodology for system synthesis

Perry Alexander, Philip Baraona, and John Penix
Knowledge-Based Software Engineering Lab

Department of Electrical and Computer Engineering
The University of Cincinnati

Cincinnati, OH USA 45221^0030
Perry.AlexanderOUC.edu

Submitted to ICEHDL 95

Abstract
VHDL provides a means for operationally defining

behavior of digital components and for describing com-
position of components. However, the operational and
structural specification techniques require specification
of a single design artifact. They do not provide an ap-
propriate means for representing requirements. This
paper describes VSPEC, a specification language used
in conjunction with VHDL to axiomatically describing
component requirements, VSPEC supports specifica-
tion of constraints and performance requirements as
well as the function of a component. Using the VHDL
architecture construct, VSPEC can also specify re-
quirements for abstract system architectures.

1 Introduction
VSPEC is motivated by the need to specify digital

system requirements in an implementation indepen-
dent fashion. Qualitatively, system requirements spec-
ify "what" a system should achieve without specifying
"how" it should be done. Design specifications are
developed from requirements and describe "how" re-
quirements are implemented. Älthbügh VHDL [6] sup-
ports specification of specific designs, it does little to
support requirements specification. In addition, VHDL
does not support a consistent representation of con-
straints.

Lack of requirements and constraint specification
has little effect when designing systems requiring few
levels of abstraction. However, there is ä growing need
for systematic design of very large, abstractly defined
systems. When starting from extremely high levels of
abstraction, the structure of the eventual design is not
reflected in requirements. Thus it is difficult to relate
an operational specification back to the requirements
it is to exhibit. In such: situations, explicit require-

ments and constraint specification allow a designer to
work at a high level of abstraction without interference
from the details of lower levels.

This paper describes VSPEC, an extension of VHDL
which addresses the problem of representing require-
ments explicitly. In the remainder of this paper,

|VHDLrs method of design specification and VSPEC's ad-
ditions are presented. The structure of VSPEC and its
associated formal basis are presented. How VSPEC and
VHDL can be used to specify abstract architectures is
presented along with the relationship between VSPEC

and algebraic specification.

1.1 VHDL Design Specification
Specification of a design in VHDL involves 3 ba-

sic constructs: (1) the entity specifies the inter-
face of a system; (2) the architecture specifies the
behavior and/or structure of a system; and (3) the
configuration associates a specific architecture
with an entity. The designer specifies a device in-
terface using the entity construct, develops one or
more structural or behavioral descriptions using the
architecture and selects a specific implementation
for the entity using the configuration construct.

Each architecture associated with an entity rep-
resents a potential design at some level of abstraction.
Structural specifications indicate how components are
composed to construct a solution. Behavioral speci-
fications describe the behavior of a solution using an
Ada-like programming language. In both cases, spe-
cific candidate designs are represented. A specific de-
sign is selected by comparing the behavior of that de-
sign with the set of system requirements.

Representation of system requirements in VHDL is
restricted to an operational style - a "program" is writ-
ten that describes an artifact having desired character-
istics. Although the operational style is an excellent

282

means for describing specific designs, it is not ideal for
describing system requirements for several reasons.

1. It forces representation of a specific design, thus
introducing implementational bias.

2. It does not adapt easily to representation of per-
formance constraints.

3. Unimportant characteristics are indistinguishable
from required features of the design.

4. Users must deal with unnecessary detail.

Figure la is an example VHDL entity representing
a component that searches a collection of records for
a specific record. Note there is no indication of what
the component must accomplish or what performance
constraints exist for it. The result is a black-box view
of the component with no indication of requirements,
as shown in Figure lb. An architecture can be devel-
oped, but such an architecture exhibits the negative
characteristics discussed.

2 VSPEC Requirements Specification
A solution to requirements representation in VHDL

is VSPEC, a Larch interface language [3] developed for
VHDL synthesis. The Larch family of specification lan-
guages consists of a collection of application specific
interface languages and a common shared language.
Each interface language defines sets of specification
primitives containing useful constructs in a target ap-
plication language. The shared language serves two
purposes. First, it provides a target formal system
for translating interface specifications. Second, it pro-
vides a language for writing auxiliary specifications
and handbooks of common components.

The traditional shared language is a first order alge-
braic language call LSL. In VSPEC, the primary shared
language is REFINE [1], due to its support for trans-
formation and synthesis, its formal basis, and its po-
tential for execution.

Figure 2a shows the VSPEC representation for the
same search as the VHDL entity in Figure 1. The
added clauses specify input conditions, output condi-
tions and constraints. Figure 2b shows a graphical
representation of the same information. The VSPEC

definition indicates that Vcc must be less that or equal
to 5 and that the area (x x y) must be less than 0.3.
No constraints are place on heat dissipation (H), clock
speed (Clk) or timing.

The specification associated with Figure 2 avoids
many of the problems with the operational specifi-
cation style. A search routine is specified indepen-
dently of any implementation by the ensures clause.
Only characteristics necessary for specifying a search

are included. Constraints are clearly specified in the
constrained by clause and do not interfere with the
functional specification. The designer need not be con-
cerned with the details of the search algorithm at the
requirements level.

3 The VSPEC entity-

All VSPEC annotations affect only the VHDL entity
structure. No changes are made to architecture
structures or any other VHDL structure. VSPEC clauses
are grouped into four broad classes: (1) those that de-
fine a devices function; (2) those that define internal
state variables; (3) those that define constraints; and
(4) those that relate VHDL data structures to formal
representations.

3.1 VSPEC Clauses and Logic
VSPEC is a collection of keywords followed by logical

sentences. The keywords indicate what requirement
each logical sentence specifies. Each logical setence is
written in typed first-order predicate calculus. Exten-
sions to the logic allow use of sets and sequences in
specifications. The logic follows the basic syntax of
REFINE , the language used for system synthesis, to
support easy translation and some degree of execution.

There are six basic VSPEC clauses:

- requires - specifies sufficient conditions on in-
puts and state for entity execution

- ensures - specifies necessary conditions on out-
puts and state following entity execution

- constrained by - specifies non-functional per-
formance constraints

- modifies - specifies what the entity may alter
- based on - associates VHDL data types with RE-

FINE definitions
- state - defines a collections of variables that rep-

resent the entity's internal state

VSPEC clauses may only access variables and sig-
nals defined in an entity port, the state clause or
quantified in a logical expression. VSPEC is strongly
typed and all variables must have an associated type,
including those bound by quantifiers. Although RE-

FINE allows type inferencing, VSPEC does not.
All VSPEC clauses are optional. Only the based on

clause may appear more than once in an entity. The
format of the requires, ensures, and constrained
by clauses is a keyword followed by a logical expression
and a semicolon.

<keyword> <logical-expression> ";"

283

entity search is

port (input: in array of element;

k: in keytype;
output: out element);

end search;

Component

In ???
1

Out

a) b)

Figure 1: A VHDL entity describing a record search.

entity search is
port (input: in array of element;

k: in keytype;
output: out element);

modifies output;
requires true;
ensures

output = e <=> key(e)=k and
e in input I;:

constrained by

power =< 5 and

area =< .3
end search;

H

Componenl
_

y
*-

i

F(ln)
 *

III
•
 > 1 r X >•

t t
Vcc Clk

Time

■*• Out

b)

Figure 2: A VSPEC entity describing a record search.

284

The format of the state and modifies clauses is a
keyword followed by a collection of variables, option-
ally typed.

<keyword> <variable>[, <variable>] ";"

The format of the based on clause is a type name
followed by the based on keyword and a logical ex-
pression.

<type> based on <logical-expression> ";"

3.2 Functional Requirements
The functional requirements of a VSPEC ent ity are

defined using the requires and ensures clauses. The
requires clause specifies a logical expression, I(x),
that must be true for the entity to perform its op-
eration. The ensures clause specifies necessary state
conditions, 0(x,z), resulting from entity execution
given a particular input. Formally, any function im-
plementing an entity must obey the condition:

Wx:D»I{x)^-0[x,F(x)) (1)

3.2.1 The requires Clause

The requires clause, I(x), is a logical expression de-
fined over all ports, signals and variables that may
provide input to the transform. I(x) is true when x is
a valid input. I{x) is a precondition for entity execu-
tion. When it is true, the entity must produce valid
output.

3.2.2 The ensures Clause

The ensures clause, 0(x+z), is a logical expression
defined over all ports, signals and variables. 0(x, z) is
true when z is a valid output given x as input. 0{x,z)
is a postcondition for entity execution and states nec-
essary conditions placed on entity outputs and state
variables.

3.3 Constraints
Constraints express characteristics an entity must

exhibit that are not a part of its function. For exam-
ple, heat dissipation constraints frequently affect se-
lection of valid designs, but heat is a side effect of the
technology. It has little to do with input and output
relationships.

Althpugh constraints do not affect function, they
are critical in hardware system design. In VSPEC
there axe two sources of constraint. The first is the
constrained by clause that specifies several perfor-
mance constraints common in hardware design. The
second is the modifies clause that limits what the
entity can alter in performing its function.

3.3.1 The constrained by Clause

The constrained by clause is a conjunction of prede-
fined variables and relations with fixed values. VSPEC
currently supports providing constraint information
for heat dissipation, area, clock speed, power con-
sumption and pin-to-pin timing. To specify con-
straint, one chooses a constraint type and uses it in
a relation. For example, to specify heat dissipation
less than 1 watt and power consumption less than 10
watts, the logical sentence heat =< 1 and power =<
10 is included in the constrained by clause.

Timing requires a somewhat more complicated rep-
resentation. Here one specifies an interval between two
pins, then relates that interval to a constant time. For
example, (a<->b) =< 10 specifies that the time be-
tween a signal arriving at port a and port b producing
a signal must be lass than 10.

3.3.2 The modifies Clause

The modifies clause specifies a collection of ports,
signals and variables that may be modified by the en-
tity. The modifies clause indicates what effects and
side effects are allowed. Only outputs may be speci-
fied in a modifies clause. Of particular interest is the
ability to specify the direction of buffer type ports.

3.4 Abstract Data Types
The semantics of VHDL data types must be defined

before reasoning about their properties is possible. El-
emental data types such as integer and bit have def-
initions loaded as a part of the VSPEC system. Thus,
when using a basic VHDL type, the semantics of that
type are present by default.

3.4.1 The based on Clause

User defined data types such as arrays and records
must be defined as a part of the definition process
because they cannot be defined a priori. This is ac-
complished using the based on predicate. The log-
ical expression defined in a based on clause defines
the semantics of a user defined type. To support this
specification process, VSPEC include standard Schemas
for defining sets, sequences, arrays and tuples. These
Schemas are used in conjunction with parameter mor-
phism to define associated VHDL types specific to user
needs.

3.5 System State
The notion of system state is typically not sup-

ported directly by axiomatic specification techniques.
A computation unit is defined by a transform that re-
lates inputs to outputs. Thus, to include state in a

285

specification it must be specified as an input to the
transform. However, specification of state-based sys-
tems is natural to hardware designers and suggest-
ing that state representation be an input to the VHDL
entity is not natural. Using the two-tiered specifica-
tion approach state can be managed by: (a) support-
ing the definition of local state variables; and (b) using
state maintaining features of port signals. Instead of
specifying a function that maps input signals defined
in the port definition to outputs in the same port def-
inition, specify a function that maps inputs and state j
maintaining objects to outputs and state maintaining
objects.

3.5.1 The state clause

The state clause is a collection of variables that store
state within a VSPEC entity. Like VHDL variables
and signals, these variables maintain their values from
one invocation of the entity. All state variables are
defined locally and are not visible outside the entity.

3.5.2 Ports

Variables defined an entity's port definition may
maintain their state. Variables of type buffer may
be inputs or outputs and are not re-initialized unless
a signal of some type is driving them. Variables of
type out and inout also maintain their state.

4 Generic Architectures in VSPEC
VSPEC supports representation of high level, ab-

stract architectures using the architecture construct
from VHDL. No modifications or annotations are nec-
essary - simply specify entity structures accessed by
the architecture using VSPEC.

Figure 3 represents a two component architec-
ture for solving the element search problem. The
architecture bateh-seq represents a two step solu-
tion of sorting'the input list and using ä binary search
to find the desired record. Although the requirements
of the sorting algorithm are specified, no algorithm is
presented. Thus, the designer may instantiate the sort
with any appropriate algorithm. Application of such
an architecture represents an iterative refinement pro-
cess common to design activities. Additionally, VSPEC
is adept at representing such refinements where an op-
erational language may fall short.

5 VSPEC and Algebraic Specification
Any VSPEC definition can be transformed into a

formal definition. The form of this definition is an al-
gebraic specification based on an extension of domain

theories as defined in CYPRESS [7] and KIDS [9, 8]. The
basic form of a domain theory is a tuple consisting of
the function domain (D), range (R), input precondi-
tion ;(I(x:D)) and output postcondition (0(x:D,z:R))
commonly referred to as a DRIO model. The DRIO
model for any VSPEC entity can be constructed using
the following rules:

D = t\ x t2 x ... x tn where tk is the sort represent-
ing the type associated with an in, inout, or
buffer ports, or a state variable

R = t\ x t2x ■.. x tm where tj is the sort represent-
ing the type associated with an out, inout, or
buffer port listed in the modifies clause, or a
;state variable listed in the modifies clause

I(x :D)—Iv(x:D) where Iv(x : D) is the logical
sentence defined by ^ne reqUires clause

0{x :D,z:R) =Ov{x :D,z:R) where Ov(x : D,z :
R) is the logical sentence defined by the ensures
clause

:':'::.: Additionally, constraints must be defined as a part
of Üie algebraic statement. The simplest means of ac-
complishing this is to simply include predicates rep-
resenting constraints in the output function of the
DRIO. However, constraints are not functional. Spec-
ifying constraints in their own clause is an attempt to
separate constraint from function. Additionally, con-
straints in their current form do not depend on vari-
ables defined in the entity1. Thus, constraints are
added to the DRIO model through a specification mor-
phism that adds logical representations of constraints.
The DRIO model becomes a DRIOC model.

^C(c1:C1,...,cn:Cn) = Cv(c1:C1,...,cn:Cn)
where Ck is a constraint variable such as heat or
area, Ck is a sort associated with a constraint
variable and Cv is the logical expression defined
in the constrained by clause

The goal of the design activity is to find and archi-
tecture that performs the transform F : D -> R such
that:

Vx:D*I(x)=$>0{x,F{x)) (2)

Thus, the goal of the synthesis activity is generation
of a transform mapping the current state and inputs
into the next state and outputs such that the output
condition is satisfied.

*A more complex constraint model could certainly include
variables and signals. Our current constraint model does not
allow this.

286

architecture bat-seq of search is
component sorter

port (input: in array of element;
output: out array of element);

component bin_search
port (input: in array of element;

key: in integer;
value: out element);

begin
bl: cl port map(x.y);
b2: c2 port map(y,z);

end bat-seq;

entity sort is
port (input: in array of element;

output: out array of element);
modifies output;
ensures bag(input) = bag(output) and

sorted(output)
end sort;

entity bin_search is
port (input: buffer array of element;

k: in integer;
value: out element);

modifies out;
requires sorted(input);
ensures

(fa e:element)
output = e <=> key(e)=k and

e in input
end bin_search;

Figure 3: VSPEC representation of a search architecture using a batch sequential approach. The original list is
sorted and a binary search finds the desired object from the resulting list.

6 Related Work
As VSPEC is a Larch interface language for VHDL it

borrows from the construction of other interface lan-
guages. Specifically, VSPEC is styled after the LM3
Larch interface language for Modula-3 [5]. Odyssey
Research Associates is currently developing an alter-
native Larch interface language fbr: VHDL [4]. This lan-
guage does not support representation of constraints
and is targeted for formal analysis rather than synthe-
sis. ORA's interface language also differs in its imple-
mentation of time. An absolute time based temporal
logic is used in specifying the function of ah entity.
Thus one can specify that a predicate becomes true at
a specific time using the notation; "P(x)@t".

Another attempt to annotate VHDL is VAL [2]. VAL

annotates all aspects of the VHDL design. All signals
in the namespace of the VHDL representation are in
the namespace of the VAL annotation. Thus, VAL an-
notates specific VHDL designs rather than represent
requirements. ORA's interface language is similar in
this respect, but does support separate requirements
definitions/

7 Riture Work
Current VSPEC research involves pursuing domain

specific support for specification activities and sup-
port for formal synthesis. An important aspect of any
Larch language is its associated handbook. A hand-

book is simply a collection of reusable theories defined
in the shared language. Handbook theories represent
commonly used structures, algorithms and character-
istics as well as domain specific information. For VHDL
we are implementing theories to represent standard
VHDL types, low level logic functions and conversion
routines. In addition, we are working on libraries to
support specifications involving signal attributes such
as event, stable, and delay. Theories for pin-to-
pin timing, heat dissipation, power consumption, area
and clock speed have been implemented to support
constraint checking during the design process.

The isomorphic relationship between VSPEC and al-
gebraic specifications is being used to exploit work in
formal synthesis, specifically, developing morphisms
between algorithms [10]. This involves development
and implementation of theories useful in constructing
multicomponent systems such as the batch sequential
search algorithm appearing earlier in this paper.

8 Acknowledgments

Support for this work was provided in part by the
Advanced Research Projects Agency and monitored
by Wright Labs under the RASSP Technology Pro-
gram, contract number F33615-93-C-1316. The au-
thors wish to thank Wright Labs and ARPA for their
continuing support.

287

References
[1] L. Abraido-Fandino. An overview of refine 2.0. In

Proceedings of the Second International Sympo-
sium on Knowledge Engineering, Madrid, Spain,
April 1987.

[2] L. Augustin, D. Luckham, B. Gennart, Y. Huh,
and A. Stanculescu. Hardware Design and Sim-
ulation in VAL/VHDL. Kluwer Academic Pub-
lishers, Boston, MA, 1991.

[3] J. Guttag and J. Horning. Larch: Languages and
tools for formal specification. Texts and Mono-
graphs in Computer Science. Springer-Verlag, i
New York, NY, 1993.

[4] D. Jamsek and M. Bickford. Formal Verification
of VHDL Models. Technical Report RL-TR-94-3,
Rome Laboratory, Griffiss Air Force Base, NY,
March 1994.

[5] K. Jones. LM3: A Larch Interface Language for
Modula-3. Technical Report 72, DEC Systems
Research Center, Palo Alto, CA, 1991.

[6] D. Perry. VHDL. McGraw-Hill, New York, NY,
1st edition, 1991.

[7] D. Smith. Top-down synthesis of divide-
and-conquer algorithms. Artificial Intelligence,"
27(l):43-96, Sept. 1985.

[8] D. Smith. Algorithm Theories and Design Tac-
tics. Science of Computer Programming, 14:305-
321, 1990.

[9] D. Smith. KIDS: A Semiautomatic Program De-
velopment System;I IEEE Transactions on^Soft-
ware Engineering, 16(9):1024-1043, Sept. 1990.

[10] D. Smith. Classification approach to design.
Technical Report KES.U.93.4, Kestrel Institute,
3260 Hillview Avenue, Palo Ältö; CÄ, November
1993.

288

APPENDIX R:
VSPEC: A declarative specification methodology for system

requirements

Phillip Baraona, John Penix, and Perry Alexander
Knowledge-Based Software Engineering Lab

Department of Electrical and Computer Engineering
The University of Cincinnati

Cincinnati, OH USA 45221-0030
Perry.AlexanderOUC.edu

Abstract
Systems engineering of computer-based systems

demands explicit representation of functional re-
quirements as well as constraints at each level of
design abstraction. However, traditional design rep-
resentation languages suck as VHDL and VERILOG
do not support requirements representation indepen-
dent from implementation. This work presents a
axiomatic specification language designed to sup-
port requirements representation. VSPEC annotates
VHDL entity structures supporting declarative spec-
ification of input preconditions, output postcondi-
tions and performance constraints as a part of the
design representation. The declarative nature of the
specification supports requirements definition inde-
pendent of design representation.

1 Introduction

It is commonly understood that engineering is
a requirements driven activity. Problem require-
ments are stated and the engineering goal is to
produce an artifact satisfying those requirements.
Requirements can be broadly categorized into two
classes: (1) functional requirements; and (2) con-
straints. Although the distinction between these
two classes is frequently debated, functional require-
ments describe the intended transformation from
input to output while constraints describe other
non-functional restrictions placed on the solution.
Both functional requirements and constraints must
be represented and accounted for in a successful sys-
tems engineering activity.

VHDL [1] is a widely accepted design specification
language for digital systems. It supports represen-
tation of artifacts at multiple levels of abstraction

as well as providing both behavioral and structural
descriptions. Unfortunately, VHDL supports only
an operational specification style and provides no
standard means for representing constraints. Thus,
when used at the requirements level, VHDL forces
the user to make implementation decisions early in
the design process. As the desired result of require-
ments analysis is a description of "what" without
regard to "how", VHDL is not an appropriate re-
quirements representation language. In addition,
constraint information frequently used to choose
between design alternatives is not explicitly repre-
sented.

VSPEC is a Larch[2] interface language for VHDL
that supports declarative specification of both func-
tional requirements and constraints. VSPEC defines
functional requirements using an input precondition
and output postcondition defined over the ports and
internal state of a VHDL entity. VSPEC defines con-
straint information using standard representations
of heat dissipation, clock speed, delay time, area
and power consumption limits. In addition, other
constraint types may be defined by the user.

This paper describes the VSPEC language and
how it is used to define systems level requirements.
A brief presentation of VHDL is given and problems
identified. The basic structure of VSPEC is then de-
scribed followed by specifics of language constructs.
Also presented is a means for using VSPEC and
structural VHDL to define high-level architectures,
thus supporting high level decomposition. Finally,
the role of VSPEC in the design process is shown
along with examples of its use.

289

2 VHDL Design Specification

Specification of a design in VHDL involves 3 basic
constructs: (1) the entity specifies the interface of
a system; (2) the architecture specifies the be-
havior and/or structure of a system; and (3) the
configuration associates a specific architecture
with an entity. The designer specifies a device in-
terface using the entity construct, develops one or
more behavioral or structural descriptions using the
architecture and selects a specific implementation
for the entity using the configuration construct.

Each architecture associated with an entity
represents a potential design at some level of ab-
straction. Behavioral specifications describe the
behavior of a solution using an Ada-like program-
ming language. Structural specifications indicate
how components are composed to construct a solu-
tion. In both cases, specific candidate designs are
represented. A specific design is selected by com-
paring the behavior of that design with the set of
system requirements.

Representation of system requirements in VHDL
is restricted to an operational style - a "program"
is written that describes an artifact having desired
characteristics. Although the operational style is
an excellent means for describing specific designs,
it is not ideal for describing system requirements
for several reasons.

1. It forces representation of a specific design,
thus introducing implementational bias.

2. It does not adapt easily to representation of
performance constraints.

3. Implementation/representation specific details
are indistinguishable from required features of
the design.

4. Users must deal with unnecessary detail.

Figure la is an example VHDL entity repre-
senting a component that searches a collection of
records for a specific record. Note there is no indi-
cation of what the component must accomplish or
what performance constraints exist for it. The re-
sult is a black-box view of the component with no
indication of requirements, as shown in Figure lb.
An architecture can be developed, but such an ar-
chitecture exhibits the negative characteristics dis-
cussed.

entity search is
port (input: in array of element;

k: in keytype;
output: out element);

end search;

search

** element

b)

Figure 1: A VHDL entity describing a record
search. Note that the entity defines only the in-
terface. The architecture describes the function
operationally.

3 VSPEC Requirements Specification

A solution to requirements representation in
VHDL is VSPEC, a two-tiered specification language
developed for VHDL synthesis. VSPEC is designed
using concepts developed for Larch [2] interface lan-
guages for software specification. The Larch family
of specification languages consists of a collection of
application specific interface languages and a com-
mon shared language. Each interface language de-
fines sets of specification primitives containing use-
ful constructs in a target application language. The
shared language serves two purposes. First, it pro-
vides a target formal system for translating inter-
face specifications. Second, it provides a language
for writing auxiliary specifications and handbooks
of common components.

The traditional shared language is a first order
algebraic language call the Larch Shared Language
(LSL) [3]. In VSPEC, the primary shared language is
REFINE[4, 5], due to its support for transformation
and synthesis, its formal basis, and its potential for
execution.

Figure 2a shows the VSPEC representation for the
same search as the VHDL entity in Figure 1. The
added clauses specify input conditions, output con-
ditions and constraints. Figure 2b shows a graphical
representation of the same information. The VSPEC

290

definition indicates that power consumption must
be less that or equal to 5 mW and that the size
(x x y) must be less than 5 x 3//m2. No constraints
are place on heat dissipation (H), clock speed (Clk)
or timing.

entity search is
port (input: in array of element;

k: in keytype;
output: out element);

modifies output;
requires true;
ensures

output = e <=> key(e)=k and
e in input

constrained by
power <= 5 mtf and
size <= 3 urn * 5 um

end search;

a)

H

search

y

i

F(ln)
element ^

:
key — >

i x

t t
Vcc Clk

element

Time

b)

Figure 2: A VSPEC entity describing a record
search. The functional requirements and con-
straints are explicitly represented as a part of the
entity construct.

The specification associated with Figure 2 avoids
many of the problems with the operational speci-
fication style. A search routine is specified inde-
pendently of any implementation by the ensures
clause. Only characteristics necessary for specify-
ing a search are included. Constraints are clearly
specified in the constrained by clause and do not
interfere with the functional specification. The de-
signer need not be concerned with the details of the
search algorithm at the requirements level.

4 The VSPEC entity-

All VSPEC annotations affect only the VHDL
entity structure. No changes are made to
architecture structures or any other VHDL struc-
ture. VSPEC clauses are grouped into four broad
classes: (1) those that define a devices function; (2)
those that define internal state variables; (3) those
that define constraints; and (4) those that relate
VHDL data structures to formal representations.

4.1 VSPEC Clauses and Logic

VSPEC is a collection of keywords followed by log-
ical sentences. The keywords indicate what require-
ment each logical sentence specifies. Each logical
sentence is written in typed first-order predicate cal-
culus. Extensions to the logic allow use of sets and
sequences in specifications. The only variables al-
lowed in each clause are: (1) ports; (2) variables
defined in the entitys state clause; and (3) vari-
ables defined by quantifiers in the sentence. Both
port and state variables are assumed to be univer-
sally quantified. The only exception to this rule is
the constrained by clause where variables defined
in constraint theories are used exclusively.

There are six basic VSPEC clauses:

- requires - specifies sufficient conditions on in-
puts and state for entity execution

- ensures - specifies necessary conditions on
outputs and state following entity execution

- constrained by - specifies non-functional
performance constraints

- modifies - specifies what the entity may al-
ter

- based on - associates VHDL data types with
REFINE definitions

- state - defines a collections of variables that
represent the entity's internal state

- includes - specifies that a shared language file
containing data types and functions is used in
the definition

- assumes - specifies assumptions made in defin-
ing the device1

VSPEC clauses may only access variables and sig-
nals defined in an entity port, the state clause or
quantified in a logical expression, VSPEC is strongly
typed and all variables must have an associated

1This clause is not implemented in the current language
parser, but will be included in a later release

291

type, including those bound by quantifiers. Al-
though REFINE allows type inferencing, VSPEC does
not.

Logical statements in VSPEC are designed to
mimic as much as possible the syntax of VHDL.

This supports ease of use by VHDL users and
achieves the language specific goals of a Larch in-
terface language. For example, numerical constants
follow VHDL format, logical connectives use their
English names, and predicates defined on signals
follow the <signal>'<property> convention de-
fined for VHDL. This changes the standard Larch
<variable>' representation for the post execution
value of <variable> to <variable>'post.

4.2 State-Based Specification
The VSPEC model uses a classic state-based spec-

ification approach. The notion of system state is
typically not supported directly by axiomatic spec-
ification techniques. A computation unit is defined
by a transform that relates inputs to outputs. Thus,
to include state in a specification it must be speci-
fied as an input to the transform. However, specifi-
cation of state-based systems is natural to hardware
designers and suggesting that state representation
be an input to the VHDL entity is not natural. Us-
ing the two-tiered specification approach state can
be managed by: (a) supporting the definition of
local state variables; and (b) using state maintain-
ing features of port signals. Instead of specifying
a function that maps input signals defined in the
port definition to outputs in the same port defini-
tion, specify a function that maps inputs and state
maintaining objects to outputs and state maintain-
ing objects.

inputs entity

l(x) 0(x,z)

C

outputs

Figure 3: State-based specification model that
forms the basis of VSPEC requirements definition.

The goal is specifying a function that accepts In-
put values and the current state and generates out-
put and a new state. To achieve this, VSPEC spec-
ifies an input precondition over inputs and state,
and an output postcondition over outputs and state.

Figure 3 shows these relationships graphically. F is
the function of the component, S stores the inter-
nal state, and C defines constraints. I(x) defines a
precondition on inputs and state while 0(x, z) de-
fines a postcondition on outputs and state given an
input. Finally, C(e) defines a set of constraints the
device must operate under.

A device's interface is defined by the VHDL

entity construct. VSPEC uses these definitions in
its clauses to reference these signals rather than re-
defining the interface. VSPEC defines a devices func-
tion by providing S and stating I{x) and 0(x, z).
Finally, VSPEC defines constraints by defining pred-
icates over c, a constraint variable set.

4.3 Internal State
The state clause defines a collection of variables

and initial values defining the internal state of a
component. These variables are not visible outside
the entity. State variables maintain their values
between entity invocations. As with any VSPEC
symbol, the undecorated state variable name indi-
cates the value before invocation and the name dec-
orated with 'post indicates the value after invoca-
tion. Thus, values before and after invocation are
accessible in the same definition.

It is important to note that VHDL ports also
maintain their values between entity invocations.
However, ports are visible outside the entity and
need not be defined in the state clause. The
state clause defines only new variables necessary
for internal state components. It is possible (even
common) for components having no state clause to
be state based using only port values as state. The
entire state of a component is the complete set of
state variables and ports. Like state variables, the
'post attribute supports accessing both a port's
pre-invocation and post-invocation values.

4.4 Functional Requirements
The functional requirements of a VSPEC entity

are defined using the requires and ensures
clauses. The domain, D, of F is the set of all finite
vectors consisting of: (1) ports providing input; and
(2) state variables. The range, iZ, of F is the set
of all finite vectors consisting of: (1) ports generat-
ing output; and (2) state variables. The direction
indicators used in VHDL port definitions and the
modifies clause determine what ports and state
variables are appropriate for D and R. Note that
a port or state variable may appear in both D and
R.

292

The requires clause specifies a logical expres-
sion, I(x), that must be true for the entity to per-
form its operation. The vector x is an element of
D. The ensures clause specifies necessary post-
conditions, 0(x, z), resulting from entity execu-
tion given a particular input. The vector z is an
element of R. Any function, F, implementing an
entity must obey the condition specified in Equa-
tion 1. The pre- and post-conditions, I and 0, de-
fined by the ensures and requires clauses repre-
sent the entity's functional requirements.

Vx:D»I(x)^0(x,F(x)) (1)

Equation 1 defines a synthesis goal considering
only functional requirements.

4.5 Constraints
Constraints express characteristics an entity

must exhibit that are not a part of its function. For
example, heat dissipation constraints frequently af-
fect selection of valid designs, but heat is a side ef-
fect of the technology. It has little to do with input
and output relationships.

Although constraints do not affect function, they
are critical in system design. In VSPEC, two clauses
are used to represent, constraints. The first is the
constrained by clause that specifies several per-
formance constraints common in hardware design.
The second is the modifies clause that limits what
the entity can alter in performing its function.
The constrained by clause is a conjunction of
predicates defined over a constraint variable set, c.
Adding constraints to Equation 1 results in the new
synthesis goal for F shown in Equation 2. Note that
C(c) is the conjunction of predicates specified in the
constrained by clause.

Vz : D • /(*) => 0(x, F(x)) A C(c) (2)

Equation 2 defines a more realistic synthesis goal
adding constraints to the functional requirements.
The variables in c are defined by underlying con-
straint theories and are not defined as a part of
each entity. When specifying an entity, con-
straint variables are inherited from the underlying
constraint theory. The current default constraint
set supports representation of power consumption,
heat dissipation, clock speed, pin-to-pin timing and
area. Users may define additional constraints as
needed using REFINE to define theories. The new
theory is added using the includes clause to load
the definition.

4.6 Data Types
The semantics of VHDL data types must be de-

fined before reasoning about their properties is pos-
sible. Elemental data types such as integer and
bit have definitions loaded as a part of the VSPEC
system. Thus, when using a basic VHDL type,
the semantics of that type are present by default.
VSPEC generates formal definitions of RECORD and
ARRAY types using standard tuple and sequence
constructs from REFINE.

5 Architectures in VSPEC

VSPEC supports representation of high level, ab-
stract architectures using the architecture con-
struct from VHDL. A high-level architecture is a
collection of interconnected component definitions.
Each component is instantiated appropriately for
a given problem. High-level architectures provide
skeletal solutions for commonly used system archi-
tectures - their use is fundamental in complex sys-
tem design. Taking a single VSPEC entity and us-
ing a VHDL configuration statement to assign a
high-level architecture to it supports incremental
design activities.

Structural VHDL defines systems by indicating in-
terconnection between components. Within a struc-
tural VHDL architecture, components are iden-
tified and generic parameters instantiated. These
components are then used to produce a netlist spec-
ifying component interconnection. This intercon-
nection specification is declarative because it simply
specifies what components are used and how then
are connected. Rather than extend the structural
VHDL architecture to represent high-level archi-
tectures, VSPEC uses it to define interconnections
between specified components, VSPEC provides re-
quirements definitions for any or all components in
the architecture.

Figure 4 represents a two component architec-
ture for solving the element search problem specified
earlier. The architecture batch-seq represents a
two step solution of sorting the input list and using
a binary search to find the desired record.

The architecture references two components,
a sorter and a bin.search. In typical structural
VHDL, structural or behavioral descriptions exist
for each component either decomposing the solu-
tion further or describing a behavioral solution. If
the entity representation for each component is
annotated with VSPEC, a third option is possible.
No architecture is associated with either entity,

293

thus specifying only component requirements. Now
three specification options exist: (1) requirements
for each component may be specified using VSPEC;
(2) the implementation of each component may be
specified using structural VHDL; or (3) the behavior
of each component may be specified using behav-
ioral VHDL. Realistically, all three will be used at
any given time due to varying stages of component
design.

Although each component's requirements are
specified, no component algorithms or assemblies
are presented. However, this new requirements
specification exists at a lower level of abstraction,
because some structural detail has been added, ex-
cluding some potential solutions and decreasing the
overall abstraction level. Application of such an
architecture represents an incremental refinement
process common to design activities. By assign-
ing bat-seq to the entity from Figure 2, using a
configuration statement, a requirements decom-
position is performed. The resulting architecture
specifies requirements and interconnections for com-
ponents and an obligation exists to verify the re-
sulting decomposition is correct with respect to the
entity's original requirements.

In addition to functional requirements, con-
straints play a large role in the architecture spec-
ification. Constraints are also "decomposed" across
collections of components. The simplest example
of this activity is budgeting power consumption,
weight or heat dissipation. When budgeting, a frac-
tion of the value being constrained is assigned to
each component in such a way that the initial con-
straint is met. With heat dissipation and power,
the sum of component constraint limits must not
exceed the initial constraint limit.

Although budgeting is common and useful, not
all constraints can be managed in this straight-
forward fashion. Maintainability, reliability, and
reuseability are examples of constraints that cannot
be budgeted across component collections. How-
ever, the methodology continues to apply when a
constraint model is developed and used to deter-
mine when the decomposition meets the initial con-
straint limit. Although developing a safety metric,
for example, may be a difficult task, if one is devel-
oped, it can be incorporated easily into the VSPEC

model.
Module fan-out is an example maintainability

constraint that cannot be budgeted. Fan-out is
the number of modules a single module decomposes

architecture bat-seq of search is
component sorter

port (input: in array of element;
output: out array of element);

component bin_search
port (input: in array of element;

key: in integer;
value: out element);

begin
bl: cl port map(x.y);
b2: c2 port map(y,z);

end bat-seq;

entity sort is
port (input: in array of element;

output: out array of element);
modifies output;
ensures bag(input) = bag(output) and

sorted(output)
constrained by

power <= 3 mW and
size <= 1 um * 2 urn

end sort;

entity bin_search is
port (input: buffer array of element;

k: in integer;
value: out element);

modifies out;
requires sorted(input);
ensures

(forall e:element)
output = e <=> key(e)=k and

e in input
constrained by

power <= 1 mW and
size <= 1 um * 2 urn

end bin_search;

Figure 4: VSPEC representation of a search architec-
ture using a batch sequential approach. The origi-
nal list is sorted and a binary search finds the de-
sired object from the resulting list.

294

into. If fan-out is high, then the complexity of the
decomposition may be too high to manage effec-
tively. A VSPEC model of fan-out adds a fanout
predicate to the constrained by clause. Specify-
ing f anout (f) < 10 says the fan-out of the compo-
nent must be less than 10. The underlying fan-out
theory expresses that fan-out is the number of sub-
modules a component has. This provides a means
for checking fan-out in an evolving system.

6 Design Process

Using VSPEC and the VHDL architecture incre-
mental design results in a tree generated by special-
ization activities. Consider the earlier search prob-
lem. In this design activity, the initial requirements
are shown in Figure 2. These requirements com-
pletely define the design problem specifying both
function and constraint.

When the high-level architecture, bat-seq (Fig-
ure 4) is associated with the initial requirements, an
incremental design decision is represented. This de-
cision represents initial problem decomposition into
interconnected search and sort components. These
components each have their associated requirements
and constraints. At this point in the design process,
explicit constraint representation allows the user to
check constraints. Namely, that power does not ex-
ceed 5 mW and size does not exceed 15 urn. Naive
constraint theories indicate that constraint budgets
do not exceed high level constraints. Without ex-
plicit representation, such verification would not be
possible. Although these theories are naive, more
realistic theories are easily encoded as REFINE spec-
ifications.

Functional requirements are also checked using
pre- and post-condition comparison. In this case,
I and O from the architecture match their corre-
sponding specifications in the system description.
Unfortunately, this will rarely be the case, thus re-
quiring more complex checks. However, the require-
ments are represented explicitly in the design rep-
resentation and are available for verification.

Assume finally that each component is expressed
using behavioral VHDL and fabricated resulting in
two hardware components. Fabrication results
may be verified independently with some confidence
their composition will meet requirements. Addi-
tionally, if constraints cannot be met, trade-ofF de-
cisions may be explored and verified within the con-
text of the entire problem.

7 Related Work
7.1 Larch

VSPEC is based on Larch's two-tiered specifica-
tion approach and is a Larch Interface Language.
VSPEC differs from existing Larch languages in its
use of REFINE as its shared language. The Larch
Shared Language [3] is a first order, algebraic lan-
guage while REFINE is a broad-spectrum language
that is both executable and formal. REFINE is
used because its environment supports software
synthesis while Larch is primarily useful for veri-
fication, VSPEC's syntax is derived primarily from
the Modula-3 interface language, LM3 [6].

7.2 VHDL Annotation Language (VAL)
VSPEC is frequently compared to the VHDL An-

notation Language (VAL) [7]. VAL is an annotation
language used to describe pre- and post-conditions
on VHDL input and output streams. In this respect,
VAL and VSPEC are quite similar. However, sev-
eral critical differences exist. First, VAL annotations
translate into VHDL assert statements. An assert
statement is a boolean valued function that causes
an event to occur when triggered. The assert is
much like an exception in a traditional program-
ming language and is used for similar purposes.
Once transformed into assert statements, the VAL
model is simulated on input streams and the result
compared to simulation of VHDL code for the same
module, VSPEC has support for execution, but this
is not its primary purpose. The logic used is not re-
stricted to an executable subset. More importantly,
the logic can be manipulated formally.

VAL supports annotation of behavioral and struc-
tural VHDL as well as the entity structure. Thus,
VAL is an annotation language or design descrip-
tion language rather than strictly a requirements
language.

Finally, VAL does not support constraint repre-
sentation or checking. In the systems engineering
environment, constraints are frequently more dif-
ficult to meet than functional requirements. Fur-
thermore, they must be recorded as a part of any
requirements specification.

7.3 ORA's Larch/VHDL
ORA is currently developing a Larch/VHDL in-

terface language. [8] In many respects, this language
is similar to VAL in its attempt to model entire
systems rather than simply modeling requirements.
This language is manipulated formally, thus it is be-
ing used to define a semantic model for VHDLLike

295

VAL, ORA's interface language supports only tim-
ing constraints and it's usefulness is therefore lim-
ited in the systems engineering area, VSPEC differs
substantially, supporting only requirements specifi-
cation and including both function and constraint.
VSPEC also models timing as a constraint where
ORA's language uses a temporal logic to model tim-
ing attributes.

8 Current Status and Future Direc-
tions

Currently, an initial Language Reference Man-
ual for VSPEC is being developed. From the VSPEC
LRM, a VSPEC parser and partial type checker have
been developed using the DIALECT component of
the SOFTWARE REFINERY[4]. This parser is avail-
able via the world wide web and ftp.

This version of VSPEC is limited to representing
digital information as is VHDL. Plans exist to com-
bine VSPEC with the ANAVHDL work underway
at the University of Cincinnati. ANAVHDL sup-
ports specification of both analog and digital com-
ponents in the same system. As VSPEC is declar-
ative and most circuit specifications are specified
using equations, this combination is quite natural.
Open and interesting problems include interfaces
between analog and digital components and recon-
ciliation of timing information from the digital and
analog worlds.

9 Summary
VSPEC is a Larch interface language for VHDL

designed to represent design requirements for syn-
thesis activities, VSPEC design goals center on:
(1) requirements representation independent of im-
plementation; and (2) constraint representation.
VSPEC adds declarative components that describe
a component's functional requirements and con-
straints. Axiomatic specifications describe func-
tional requirements by defining input pre-conditions
and output post-conditions. Predicates denned
over constraint variables describe component con-
straints, VSPEC supports descriptions of high-level
architectures using structural VHDL and allows in-
cremental design step representation.

10 Acknowledgments

Support for this work was provided in part by
the Advanced Research Projects Agency and moni-
tored by Wright Labs under the RASSP Technology

Program, contract number F33615-93-C-1316. The
authors wish to thank Wright Labs and ARPA for
their continuing support.

References
[1] D. Perry, VHDL, McGraw-Hill, New York, NY,

1st edition, 1991.

[2] John V. Guttag and James J. Horning, Larch:
Languages and Tools for Formal Specification,
Springer-Verlag, New York, NY, 1993.

[3] V. Guttag, J. Horning, and A. Modet, "Re-
port on the Larch Shared Language: Version
2.3", Technical Report 58, DEC Systems Re-
search Center, April 1990.

[4] L. Abraido-Fandino, "An overview of refine
2.0", in Proceedings of the Second International
Symposium on Knowledge Engineering, Madrid,
Spain, April 1987.

[5] Reasoning Systems Inc., Palo Alto, CA, Refine
User's Guide, Version 3.0, May 1990.

[6] K. Jones, "LM3: A Larch Interface Language
for Modula-3. A Definition and Introduction.
Version 1.0", Technical Report 72, DEC Sys-
tems Research Center, June 1991.

[7] L. Augustin, D. Luckham, B. Gennart, Y. Huh,
and A. Stanculescu, Hardware Design and Sim-
ulation in VAL/VHDL, Kluwer Academic Pub-
lishers, Boston, MA, 1991.

[8] D. Jamsek and M. Bickford, "Formal Verifica-
tion of VHDL Models", Technical Report RL-
TR-94-3, Rome Laboratory, Griffiss Air Force
Base, NY, March 1994.

296

APPENDIX S:
Application of Software Synthesis Techniques to Composite

Systems

Perry Alexander, Philip Baraona, and John Penix
Knowledge-Based Software Engineering Lab

Department of Electrical and Computer Engineering
The University of Cincinnati

Cincinnati, OH USA 45221-0030
Perry.AlexanderOUC.edu

Submitted to: ETCE-95 Engineering Software Session

July 15, 1994

Abstract
Prototyping composite hardware/software systems

requires synthesis of hardware, software and commu-
nications protocols. Capabilities existio synthesize
ASIC designs from a Pascal-like behavioral VHDL
subset and capabilities are developing for transforming
the same VHDL subset into standard software devel-
opment languages. However, the process of synthesiz-
ing behavioral VHDL from systems level requirements
has not been addressed. Users are required to write
behavioral VHDL descriptions of their components in
a purely operational manner. This results in imple-
mentational bias and premature hardware/software al-
location decisions. We propose automating this pro-
cess by expressing systems level requirements in a
declarative specification language and using standard
software synthesis techniques to generate behavioral
VHDL from them.

1 Introduction
The overall goal of this research is synthesis of com-

posite computing systems using traditional software
synthesis techniques. A composite computing system
is defined as a collection of computation units that
maybe implemented either software of hardware com-
ponents. To achieve this end, the high-level approach
described in Figure 1,

The general flow of information through the sys-
tem is as follows: (a) Design requirements (includ-
ing constraints) are parsed to generate a decorated
abstract syntax tree used by synthesis processes; (b)
the problem may be decomposed into components; (c)
an algorithm is synthesized for each component; and
(d) The assemblages of components, the general algo-
rithmsjand abstract syntax tree are transformed into
an appropriate design representation. Given this de-
sign methodology, this research is decomposed into the
following sub-goals:

1. Representation of system and component require-

ments.
2. Generation of an intermediate form to support

synthesis
3. Synthesis of component designs
4. Generation of output in an appropriate design

;.';■' representation language

VSPEC/
VHDL

Abstract-Syntax
Tree

Abstract-Syntax
Tree

Figure 1: Flow of information through the synthesis
process

This paper deals primarily with our specification
language, called VSPEC, and the methods used to
synthesize algorithms from requirements suitable for
use in behavioral VHDL. VSPEC describes computa-
tion units axiomatically, specifying an input precon-
dition and an output post condition.1 VSPEC is a

1The process of parsing VSPEC to generate the appropriate

297

Larch [5] interface language for VHDL that translates
both into the Larch Shared Language [5] and the high
level programming language REFINE. The transfor-
mation of VSPECmto REFINE expresses the require-
ments in an independent form suitable for use by var-
ious software synthesis tools including KIDS {141 and
BENTON [2].

1.1 Experimental Domain
Our current domain is rapid prototyping of digi-

tal signal processing systems. This work is directed
towards automated synthesis of board- and MCM-
level signal processors from systems level acquire-
ments. This synthesis domain includes ASICs, off- i
the-shelf components including CPUs, and embedded
software.

The design representation language for this effort
is mandated to be VHDL for hardware components :
and C for software components. In addition, allsoft-
ware components will be specified in VHDL first, then
transformed into C as required by the sponsoring
agency. Selection of VHDL is due to the domain's het-
erogeneous nature and the United States Department
of Defense acceptance of VHDL as a systems repre-
sentation language. Selection of C is due to the ready
availability of C compilers for off-the-shelf digital sig-
nal processors and existing capabilities for performing
VHDL to C transformations.

The general approach is synthesis of VHDL to rep-
resent both hardware and software components. Ca-
pabilities currently exist for transforming a rich subset
of behavioral VHDL into RTL level VHDL suitable for
synthesis and fabrication [11]. Capabilities also exist
for transforming behavioral VHDL into compilable C i
code. Thus, we can achieve our objective by taking
a requirements description of a system, transform the
requirements description into behavioral VHDL and
synthesize hardware and software components.

1.2 Axiomatic Specification
Specifying computation units using axiomatic spec-

ifications involves defining a transform hy specifying
an input precondition and an output postconditions
Given the input precondition holds, the 'transform
must guarantee that the output postcondition is made
true. Smith [13] suggests that such a specification be
an algebra specifying the domain, range, input pre-
condition and output postcondition. Thus, a function
such as in Figure 2, may be described in terms of its
domain (D), range (R), input precondition Ifo), and
output postcondition, 0{x,z). When I(x) holds for
some input x of type 2>, the procedure must return
some element z- of type R such that 0(x, z) holds. A
function F{x) = z satisfies this specification when for
any x suchMiat I(x) holds, F(x) generates z such that
0(x,z) hplds. Formally:

\fx■": D »I(x) A F(x) = z=>3z: R*0(x, z) (1)

internal representation is a simple compiler problem. The pro-
cess of generating VHDL source from REFINE [l] algorithms is
a simple lateral transformation.

This work relies on the assumption that hardware
components may be specified in the same manner.
Specifically, that the transform associated with a hard-
ware component can be defined by an appropriately
selected domain, range, input precondition and output
postcondition. A second assumption is that such ax-
iomatic specifications can be used to synthesize hard-
ware components. The first assumption, that hard-
ware can be specified axiomatically, is easily made and
is commonly used in formal verification of hardware.

: The second assumption is made based on the similarity
between behavioral specification and traditional pro-
gramming. The process component of VHDL sup-
ports specification of behavior using an Ada-like lan-
guage. If requirements for Ada programs can be syn-
thesized from requirements, then it stands to reason
that VHDL programs can. Semantically, VHDL and
Ada differ substantially - the bulk of this paper ad-
dresses some of those differences.

2 VSPEC
VSPEG-is a Larch interface language [5] for VHDL.

The VSPEC interface language annotates the VHDL
entity structure adding component requirements in
terms of precondition, postcondition, performance
constraints and state. Each structure in the VSPEC
interface language translates into a formal definition
in a shared language. VSPEC differs from a typical
Larch interface language in that the primary shared
language is REFINE rather than the Larch Shared Lan-
guage (The reasons for this difference will be discussed
later). To understand the VSPEC language, one must
first have a cursory understanding of how VHDL rep-
resents systems.
2.1 VHDL
;; VHDL [9] is a specification language for digital sys-
tems whose structure and appearance is similar to
Ada [15]. Although this structural similarity exists,
it is somewhat deceiving because the semantics of a
VHDL specification differ substantially from a simi-
larly structured Ada program.

A system is described in VHDL by describing
■its constituent components and relationships between
them. VHDL specifications consist of three fundamen-
tal construct types: (a) entity constructs describing
component interfaces; (b) one or more architecture
constructs describing each component's behavior or
structure; and (c) configuration constructs as-
sociating entities with specific architectures.
Thus, an entity represents an interface, several
architectures represent behavior and structure, and
a configuration indicates a specific architecture to
represent the behavior of a component for a specific
design task.

2.1.1 Entity Structures

An entity specifies the interface of each VHDL com-
ponent much as an Ada public declaration specifies
the interface of a procedure. The entity construct
names the component and defines its ports. Ports
are the hardware equivalent of parameters and rep-
resent the inputs and outputs, their types, and the

298

; 2»
 =»

I(x) 0(x,z)

—>■

—>■
function F(x:D) : R

begin >
Kx)
— Function Body

0(x,z)
return z

end;

a) b)

Figure 2: Axiomatic descriptions of: (a) a typical procedure; and (b) a typical hardware component.

direction of data flow. VHDL entity structures are
connected by connecting theory ports. Figure 3 is an
entity describing a simple S-R latch. Note that the
entity describes only the component interface, not its
behavioral requirements or constraints.

architecture behavior of sr_latch is
begin

q <= NOT (qb AND s);
qb <= NOT (q AND r);

end behavior;

entity sr_latch is
port (s,r: in bit; q,qb:

end sr_latch;
buffer bit);

Figure 4: A VHDL architecture describing the be-
havior of an S-R latch.

Figure 3: A VHDL entity describing the interface to
an S-R latch.

Parameters denned in the port definition are re-
ferred to as signals. Signals in VHDL are very similar
to variables and parameters in a traditional program-
ming language. Variables also exist in VHDL locally
to processes, however in this work signal assignment is
assumed to include variable assignment. When defin-
ing the behavior of a VHDL entity, relationships be-
tween input and output ports are defined, much as re-
lationships between input and output parameters are
defined in a traditional programming language.

2.1.2 Behavioral Specification

VHDL supports specification of a component's be-
havior directly using ;an operational description lan-
guage, or indirectly using an assembly of other com-
ponents. Behavioral specification: involves writing a
VHDL "program" in an operational VHDL subset
similar in appearance to Ada. This subset includes
familiar control structures and data types standard in
procedural programming languages as well as signal
assignment and synchronization constructs necessary
to naturally specify hardware; components. Figure 4
shows a behavioral description of the S-R latch.

The means of specifying behavior used in Fig-
ure 4 involves concurrent signal assignment state-
ments. ;The values of q and qb are updated using the
"<=" signal assignment operator. In this specification,
value assignment to q and qb occurs simultaneously.
Thus, the first assignment statement does not alter
the program statelipripr to evaluating maintaining the
original value of q for the second assignment state-
ment. The VHDL code use|: to generate the assigned

value is a driver. There should exist one and only one
driver for each output signal.

An alternative specification involves the use of
process blocks. In a process, assignments do not oc-
cur simultaneously and statements execute in a man-
ner similar to a traditional programming language.
Thus, the VHDL fragment from Figure 5 requires the
introduction of a temporary variable as is traditional
in an imperative language. Note that the two behav-
iors specified using concurrent assignments and pro-
cesses specify identical behaviors.

architecture behavior of sr_latch IS
begin

pi: process
variable tmp : bit;

begin
tmp := q;
q <= not (qb and s);
qb <= not (tmp and r);

end process;
end behavior;

Figure 5: A VHDL architecture describing the be-
havior of an S-R latch using a single process.

If multiple processes exist in an architecture, all
processes execute simultaneously. Thus, concurrent
assignment statements described previously are a
shorthand notation for a collection of processes with
single assignments to output signals. The process
equivalent of Figure 4 is shown in Figure 6

The parallels between process descriptions and

299,

architecture behavior of sr_latch is
begin

pi: process begin
q <= NOT (qb AND s);

end process;
p2: process begin

qb <= NOT (q AND r);
end process;

end behavior;

Figure 6: A VHDL architecture describing the be-
havior of an S-R latch.

traditional programming languages are exploited to
synthesize behaviors for single entities. The objective
is synthesis of code for process statements and/or
concurrent assignments. Problems are decomposed
with respect to output ports and composed using the
concurrent assignment or process facilities.

2.1.3 Structural Specification

Structural specification involves specifying a collec-
tion of VHDL entity components and connections :
between them. Using the component statemeht,;the |
architecture specifies the components used in the as-
semblage and assigns local names to ports. The body
of the structural architecture names each local compo-
nent, assigns a component from the declarative section
to it, and specifies connections involving the local com-
ponent using local parameter names. Figure 7 showsh
a structural specification of an S-R latch.

architecture structure of sr^latch is
component nor2

port(a,b : in bit; :c : out bit);
begin »

nl: nor2 port map|(s,qb,q);
n2: nor2 port map (r,q,qb);

end structure;

Figure 7: A VHDL architecture describing the
structure of an S-R latch.

Together the entity and architecture constructs
describe a component's inputs, functional behavior
and structure. Many architectures may exist for a sin-
gle entity, thus the configurationstructure is used
to specify what architecture should be associated with
each entity. A typical VHDL design process involves
specifying component interfaces, specifying behavior
and refining the behavior to specify an-implementa-
tion as a structural specification.

Given a behavioral description, there are auto-
mated and semi-automated means of refining that de-
scription. It is currently possible to synthesize di-
rectly implementable designs tfrpm behavioral VHDL

as large as small CPUs [11]. Many commercial VHDL
support-environments include synthesis subsystems.
Thus, prototype system synthesis is achieved by gener-
ating behavioral VHDL and using lower level synthesis
tools to generate code, ASICs, and board layouts.

2.2 VSPEC Entities
VSPEC adds six declarative clauses to the VHDL

entity: (1) the state clause declares variables repre-
senting the state of the component; (2) the requires2

states the component's precondition and is a function
mapping entity input and state variables onto the
boolean set* (3) the ensures clause states the compo-
nent's post;condition and is a function mapping input,
output and state variables onto the boolean set; (4)
the modifies clause names input, output and state
variables whose values may be changed by the com-
ponent;; (5) the constrained by clause states perfor-
mance constraints associated with the component; and
(6) thei based ;on clause associates primitive and user
defined types with shared language representations.

Each clause-is stated as a logical expression (with
the exception of themodif ies and based on clauses)
in typed first order predicate calculus with equality,
extended to include set and sequence theories. The
only variables allowable in the logical expressions are
defined in the entity's port definition, the VSPEC
state clause, or defined locally in a logical expression
as a quantified variable. All variables must be typed
and typing requirements are checked by the VSPEC

sparser.
The VSPEC parser transforms each clause into

a REFINE logical expression used to drive synthesis
and analysis algorithms. Figure 8a shows a generic

: VSPEC entity definition with each VSPEC clause.

2;3 Representation of Architectures
VHDL represents connected collections of compo-

nents using architectures as shown in Figure 7. Com-
ponents are connected and their parameters used to
indicate interconnection. The example shown in Fig-
ure 7 defines a two stage, batch sequential approach to
searching a collection of values. The input list is sorted
and a binary search is applied to the result of sort-
ing. The architecture represents the batch sequen-
tial approach by defining a sorting component, defin-
ing a binary searching component, and connecting the
outputs of the sorter to the inputs of the searcher.
Note however that the search and sort component's
implementation details are not specified. Specific al-
gorithms must be synthesized at some later point.

Thus, the architecture notion is used in conjunc-
tion with VHDL entity components with VSPEC an-
notation to represent system architectures. Represen-
tation of requirements for multi-component systems
also allows VSPEC to represent composite, multi-
component systems by supporting specification of
hardware executing software processes and complex
device intercommunication.

2In earlier versions of VSPEC and earlier papers, the
requires clause case called the assumes clause

entity example is
port (a,b: in bit; c: out bit);

modifies c;
state s: bit;
requires I(a,b);
ensures 0(a,b,s,c) and D(a,b,s,s');
constrained by Q;

end example;

a)

300

D = bitxbitx bit
R = bitx bit
I = R(a,bys)
0 = 0(a,b,s,c) A D(a,b,s,s')
C = q

b)

Figure 8: VSPEC definition and associated tuple representation.

entity search is
port (input: buffer array of integer;

key: in integer;
value: out integer);

modifies value;
ensures
V x : integer value = x =£■ x £ input;

end example;

architecture bat-seqSof search is
component sorter .|f
port (input: in array of integer;

output: out array of integer);
component bin_search
port (input: in array of integer;

key: in integer;
value: out integer);

begin
bl: cl port map(x,y);
b2: c2 port map(y,z);

end;

entity sort is
port (input: in array of integer;

output: out array of integer);
modifies output;
ensures bag(input) = bag(output) A

sorted(output
end sort;

entity bin_search is
port (input: buffer array of integer;

key: in integer;
value: out integer);

modifies out;
requires sorted{input);

V x : integer value = x =>■ x 6 input;
end bin_search;

Figure 9: Using a VHDL architecture to represent general structures. Note that a VSPEC entity is used to
represent the requirements of each component

301

3 Parsing VSPEC
Algorithm synthesis does not operate on raw

VSPEC. Before algorithm synthesis begins, the
VSPEC definition is parsed into a decorated abstract
syntax tree. The abstract syntax tree is represented
using the REFINE object-base and the parser written
in the DIALECT system.

In the abstract syntax tree, each entity is repre-
sented by its constituent components from the inter-
face language. Namely, the port and state clauses
representing the system interface and internal state,
the input precondition, the output post condition, and
any existing performance constraints. Together, these :
define a specification as a problem theory [13] support- ^
ing use of KIDS and other similar transform systems.;

The abstract syntax tree
also represents architectures. Each architecture i:
is linked to the entity representing its interface and i
requirements. Refining our synthesis objective leads
to the goal of associating each entity with at least
one architecture with a behavior description, or a
structural description whose components have com-
plete behavioral descriptions at some level of abstrac-
tion. Figure 8b shows the result of parsing a VSPEC
entity.

4 VHDL Synthesis From VSPEC
After VSPEC is parsed into the abstract syntax

tree form, synthesis activities begin. For each entity,
a suitable architecture must be synthesized. From
the port descriptions and VSPEC clauses, a domain
theory is formed and represented using the DRIO no-
tation proposed by Smith [12,13, 14]. The user guides
the selection of a general structure involving either a ;
single, behavioral architecture, or structural architec-
ture specifying a configuration of components.

4.1 Synthesis Goals
Although VHDL and Ada share structural similar""

ities, VHDL should not be:viewed as"simply a pro-
gramming language. Several characteristics of VHDL
representations must beiaccounted for in the synthesis
process. These include the co-existence of entities,
the state machine nature of entity descriptions, signal
attributes, and concurrent assignment.

A naive examination of VHDL may lead to the
belief that the entity component iis equivalent to a
procedure or function in a traditional imperative lan-
guage. Thus, connections between components de-
fine a sequential control flow. In a VHDL descrip-
tion, entity components represent concurrently ex-
isting devices and processes. Activation of compo-
nents occurs due to parameter changes, not due to
explicit calls: and parameter passing. Each entity
description has a sensitivity list indicating what pa-
rameter changes can cause its invocation. When in-
voked, the architecture implementing the entity is
executed to completion, interacting with other entity
structures only through changing port values and wait
statements. Although an entity is the basic comput-
ing element in VHDL as a procedure is in Ada, an
entity's behavior more closely represents a process
than a procedure.

The general goal of a VHDL synthesis activity
driven by a VSPEC specification is to synthesize a
function,: i?(:r), such that:

Vx : D • I(x) =» 3z[; R • 0{x, z) A £(z) = z (2)

where:

- D is the cartesian product of sorts associated with
in, inout and buffer parameters.

- R is the cartesian product of sorts associated with
out, inout parameters and only those buffer pa-
rameters named in the modifies clause.

- I(x) is the input precondition defined in the
requires clause.

: -Ö(x, z) is the output postcondition defined in the
ensures clause.

4.2 State Based Solutions
VHDL reflects the common view of hardware com-

ponents as state machines. Unlike a typical subpro-
gram, an entity's local storage is not initialized for
each invocation - local variables and some parameters

: maintain their previous values. Thus, values of lo-
cally defined signals and variables, and ports define
the state of the component. In Figure 4, the previ-
ous values of;q and qb are used to generate the next

; values.
The structure of a traditional axiomatic specifica-

tion from Section 1.2 is defined over the inputs and
outputs of the specified component. No mention is
made of the internal state of the component. The
brute force approach would be altering the entity
definition to include state variables as inputs.

State-based system synthesis is achieved by synthe-
sizing a transform that includes anything maintaining
its state from one invocation to the next as a part of
both the domain and range of the transform. Con-
sider the VSPEC example from Figure 8. To satisfy
this VSPEC specification, we must synthesize one or
more transforms that collectively satisfy:

D = bitxbitxbit
R = bitxbit
I(x:D) = R(a,b,s)
0(x:D,z:R) = 0(<a,b,s>,x) A D(<a,b,s>,s)

The domain and range of the entity being syn-
thesized are different than the domain and range of
the synthesis goal. The entity domain and range are
both augmented to include types of state variables.
Thus, the synthesized function will produce values for
entity output signals and signals and variables main-
taining state. The state variables of a VSPEC entity
include and variables defined in the state clause and
ports defined as type buffer, out, or inout. The syn-
thesis goal stated earlier is modified such that the do-
main and range include values of state variables. Ap-
propriate buffer signals have already been included
in the original domain.

302

Note the single function produces state transition
and output. Thus, the resulting system is either a
Moore or Mealy type machine depending on the sig-
nals and variables involved in calculating outputs.

4.3 Managing Concurrency
Behavioral VHDL heavily utilizes concurrent signal

assignment and concurrent processes. Viewed as a se-
quential program, the specification from Figure 4 is
incorrect. The contents of q would be updated before
qb replacing the previous q needed for qb. This is an
example of the classic value swap problem in tradi-
tional programming languages. In behavioral VHDL,
these assignments occur concurrently. When assign-
ments occur concurrently, the specification will func-
tion correctly.

Concurrent assignments and concurrent processes
begin from the same state and cause state changes
at the same time. Thus, any problem may be de-
composed into processes that generate outputs for a
subset of output signals. If no output signal is driven
by multiple assignments and processes do not inter-
act via wait statements or shared local variables, the
composition of those processes is trivial. Full advan-
tage of the independence of processes and assignments
is taken when partitioning problems.

4.4 Partitioning
The brute force synthesis approach is to generate

an algorithm that accepts an element from D and gen-
erates an appropriate element of R. This function is
translated into a single VHDL process that executes
and updates all output signals. Figure 10 illustrates
such a transform.

A more appropriate synthesis method takes advan-
tage of the VHDL process and concurrent signal as-
signment concepts. The requirements of each func-
tion being synthesized is decomposed into require-
ments for each signal, or requirements for disjoint sub-
sets of signals defined in |he function'si range. When
evaluating concurrent signal assignments, each signal
driver is evaluated independently from the same ini-
tial state and results are concurrently assigned to out-
puts. Thus, the evaluation of each driver has ho effect
on other drivers.

When synthesizing functions for drivers, full advan-
tage is taken of this independence;: The synthesis obli-
gation is decomposed into several simpler obligations
for subsets of the output signals. These functions are
composed as processes in an architecture. The compo-
sition will be correct if: (a) each output signal appears
on the left sideof an assignment in only one driver; (b)
the conjunction of postconditions from each driver sat-
isfies the overall postcondition; arid (c) satisfying the
input condition implies the input condition of each
driver is satisfied.

Formally, synthesizing algorithms for collections
of signals involves generating the set of functions
/i,/2,— ,/n where Dk,Rk,Ik(x),Ok(x,z) and Ck de-
scribe the domain, range, input condition, output con-
dition and constraints of fk(x). The following two
conditions must also hold:

I(x)=> f\Ik(xk)
k=l

/\Ök(xk,Zk)=>0(x,z)

(3)

(4)
fc=i

Equation 3 assures that if the overall input precon-
dition is met, individual driver preconditions are also
met. If this were not the case, then it would be pos-
sible for a function to fail when the precondition of
the overall:entity is met. Equation 4 assures that if
each driver postcondition is satisfied, the overall out-
put condition is satisfied. If this were not the case,
then the collection of synthesized functions will not
necessarily generate all necessary output values.
. If the mapping from each output or state variable to
the function that generates it is injective, then a driver
is synthesized for each output. Thus, concurrent sig-
nal assignments are used to assemble the drivers into
a single component. Otherwise, a process and nec-
essary local storage are created for each driver. Both
options are shown in Figure 11.

It should be noted that each of the drivers syn-
thesized functions independently. From a synthesis
perspective, this eliminates the need to verify that no
harmful interactions occur between drivers. However,
a system is rarely developed as a collection of inde-
pendent components. To synthesize realistic VHDL
systems, multi-component systems with realistic de-
grees of interaction must be synthesized.
4.5 Signal Attributes

Software systems deal primarily with stable vari-
able values. Hardware representation systems must
represent not only signal values, but how those values
change. Consider a device with a leading-edge driven
clock: If the clock is viewed as a binary value, only two
states can be represented. VHDL provides function
attributes of the form sym 'att where sym is a defined
symbol name and att is an attribute defined for that
Symbol. Attributes such as delayed, stable, quiet,
and transaction are defined for all symbols repre-
senting signals. For example, the event attribute re-
turns a true value if its associated signal just changed
values. Thus, the following VHDL statement repre-
sents the conditional for an event that should occur
on the rising edge of signal elk:

clk='l' and elk'event

Managing signal attributes appears to be a diffi-
cult problem. However, defining predicates and the-
ories for needed attributes supports their inclusion in
the specification process. The elk'event attribute
reference can easily be represented as the predicate
event (elk). Furthermore, adjusting the syntax of the
interface language allows specification of the attribute
using the VHDL form. Figure 12 shows an adaptation
of the SR latch specification to include a clock signal
and form an edge triggered flip-flop.

Although some VHDL characteristics may not feel
natural to a traditional programmer, they are quite

303

entity sr_latch is
port (s,r : in bit,

q,qb: buffer bit)
ensures

q' = "(s and qb) and
qb' = "(r and q)

end sr_latch;

function sr_latch(s,r,q,qb: bit)
: tuple(bit,bit)

<not(s and qb), not(r and q)>

architecture mono of sr_latch is

procedure sr_char(s,r,q,qb: in bit;
nq,nqb: out bit) is

begin
nq :- not(qb and s);
nqb :- not(q and r);

end sr_char;

begin
bl: process

variable nq, nqb: bit;
begin:

sr_char(s,r,q,qb,nq,nqb);
q <= nq;

- v.: ■■-,: v' qb: <= nqb;
"""■■■;end process;

end mono;

Figure 10: Monolithic algorithm synthesis for a single VHDL entity.

architecture proc of test is architecture concur of test is
bl: process ^ <= fi(xi);

variable tmpi,tmp2.. impk : Ri it <= J2^-i)\
fi(.xi,tmpi,tmp2...,trnpk); ...
zi <= tmpn "%>::■<= fn(Xn);
Z2 <= tmp2\ end concur;

zu <= tmpk
end process;
b2: process

variabl e trnpi+i, t mpk+2.. .tmpj : R2
f2(x2,trnpk+i ,tmpk+2- ■ ..tmpj);
Zk+i <= tmpk+i;
Zk+2 <= tmpk+f,

Zj <= tmpj
end process;

bm: process
variable tmpn_i,tmpn : Rm

fmixm,impn^i,tmpn);
zn_i <= impn-i;
zn <=tmpn)

end process;
end proc;

Figure 11: Assembling multiple algorithms into a single component using processes and concurrent signal assign-
ment.

304

entity re_sr_latch is
port (s,r : in bit,

q,qb: buffer bit,
elk: in bit)

ensures
(clk=i and event(elk) and
q' = "(s and qb) and
qb' = "(r and q))

or
(q'=q and qb'=qb)

end re_sr_latch;

Figure 12: SR latch specification modified to specify
a rising edge triggered SR flip-flop.

natural to hardware designers. In addition, each can
be specified using traditional, axiomatic specification
techniques. However, any successful VSPEC-related
tool must be used by hardware designers. Thus,
specification of this type of characteristic in VSPEC
and synthesis of VHDL supporting these characteris-
tics must be supported by VSPEC. This is the pri-
mary reason for using a Larch interface language -
the designer works in a language supporting tradi-
tional hardware specification techniques and familiar
constructs that have a formal interpretation.

5 Synthesis Techniques
Given the result of parsing a VSPEC entity, one

may employ any number of synthesis techniques to
derive an algorithm for the transform. In this work,
formal synthesis techniques are employed. Specifically,
a case-based reasoning approach based on the CY-
PRESS [12] operator-match problem solving technique
and interfacing with KIDS [14].
5.1 Algorithm Synthesis
5.1.1 Direct Transformation

The simplest algorithm specification technique avail-
able is direct transformation. It should be used when
the structure of the specification directly reflects the
structure of VHDL used to implement it. The spec-
ification is transformed using simple syntactic tech-
niques to generate VHDL code. This technique is
similar to the specification to code option available
in KIDS and other automatic programming systems.

5.1.2 Case-Based Reasoning

Case-based reasoning [10] uses similarities between
problems to select solutions. The assumption is
that similarity between problems implies similarity
between: solutions. In the BENTON system, case-
based reasoning is used to retrieve and reuse specifica-
tions [2]. The same techniques are used to retrieve and
reuse VHDL fragments described by VSPEC specifica-
tions. VSPEC is used to generate features from both
the problem and potential solutions for similarity cal-
culation. Case-based reasoning is useful primarily for

retrieving potential solutions, but does not guarantee
validity of the solution. Thus, after the solution is re-
trieved and adapted, a further proof obligation exists.
VSPEC makes this obligation simpler and supports
means for correctness preserving adaptation using de-
rived antecedent, but it does not avoid the obligation.

5.1.3 Formal Transformation

The chief algorithm synthesis tool is KIDS [14, 13].
KlDS is based on the formal composition of an algo-
rithm theory representing a problem solving method-
ology and a domain theory representing the prob-
lem itself. The DRIO specification generated by the
VSPEC parser is motivated chiefly by specification
format used by KIDS, however other synthesis systems
frequently use similar means for representing specifi-
cations [8].

In order to generate algorithms using KIDS, one
must specify a complete domain theory, of which the
specification itself is only a part. One must also use
REFINE to specify laws and auxiliary functions that
define the transform itself. The transformation from
interface language to REFINE accomplishes some of
this along with libraries of general theories describing
operators over types. In general, specifications beyond
those directly specified by VSPEC are required for the
synthesis process to complete effectively.

5.2 Architecture Synthesis
The most active area of this research is synthesis of

multi-component systems. Given a high level VSPEC
specification, generate a system involving a collection
of interconnected entity's rather than simply a col-
lection of independent processes.

5.2.1 Case-Based Reasoning

The simplest technique currently used is applying
case-based reasoning to retrieve and adapt multi-
process architectures. Architectures take the form of
procedural networks with each action representing a
single component. In a typical procedural network,
an action is represented by a precondition and post-
condition, thus the representation adapts naturally to
specification of some architectures. Actions are spe-
cialized using algorithmic synthesis techniques, an-
tecedent derivation, or heuristic adaptation. As be-
fore, the results of some adaptation processes require
that the resultant algorithm be verified. If the archi-
tecture is known to be correct and is specialized using
correctness preserving operations, verification is typi-
cally not required.

5.2.2 Formal Synthesis

General architectures can be synthesized using the
KIDS approach by developing algorithm theories
to support architecture synthesis and by using
antecedent derivation to discover missing compo-
nents [3]. The batch sequential architecture for the
search entity shown in Figure 9 can be synthesized

305

by selecting the binary search algorithm and using its
precondition to derive the sort ENTITY.

The binary search algorithm takes a key value and
a list of elements and returns the value discovered in
the list. The precondition of binary search is that the
input list must be ordered. Other preconditions may
also be derived to fit this algorithm to the problem.
There is no precondition associated with the search
entity driving the synthesis process, thus there is no
assurance that the collection of inputs will be in or-
der. Thus, a component must be developed to prepare
the original input for use by the binary search routine.
This technique is very similar to techniques used by
CYPRESS and kids to synthesize divide-and-conquer :
algorithms [12]. The specification of this new compo-
nent will be as follows:

- D = D,
- R=Dbs
- I(x) = /.(*)
- 0(x, z) = Ibs(z)

where DS,RS>... are associated with the original
search specification and Dbs, Rts, ■ ■ ■ are associated
with the binary search specification. The resultant
specification is almost the sorting specification with
no precondition and a sorted output condition. Note
the missing bag(x)=bag(z) element in the generated i
specification.

Arbitrarily complex sequences of entity's may be
specified in this manner by: (a) repeating the batch
sequential process for discovered components; arid;;(.b)
generating similar techniques for batch parallel and
conditional branching. Note that a control strategy isr'
not proposed here. The user must make control deci-
sions at each synthesis stage. Thus, problems associ-
ated with some planning algorithms can be avoided.

5.2.3 Non-Sequential Architectures

The antecedent derivation techniques can effectively
generate architectures where a clear order- of execution
exists and components do not engage in bidirectional
communication.3 Consider specification of a pair of
transceivers or synchronously communicating devices.
In order to synthesize such system using KIDS tech-
niques, general algorithm theories must be developed
describing various architectures. Antecedent deriva--
tion is useful even in these situations, but discover-
ing missing components should eventually give way to
specializing known architectures to specific problems.

6 ttelated Work
The approach taken in constructing the VSPEC

language is based heavily on the Larch/Modula-3 in-
terface language [7]. Another parallel effort in de-
veloping a Larch interface language is underway at
Odyssey Research Associates [6]. This interface lan-
guage uses the Larch Shared Language rather than

3 It has not been determined that antecedent derivation can-
not be used for such situations. It simply has not been demon-
strated that it can.

REFINE and is targeted towards formal VHDL veri-
fication, not synthesis. The techniques used in this
work are being extended from Penelope [4], an Ada
verification system. VSPEC could potentially support
verification, however its prime motivation is driving
synthesis processes. ;:

Most of the synthesis aspects of this work and the
specification of components in terms of domain, range,
input precondition and output postcondition is based
on application of algorithm theories to program syn-
thesis. These techniques were proposed by Smith 13
and implemented in the CYPRESS [12] and KIDS [14"
systems.

7 Future Directions
: Three directions currently dominate this research

effort: (1) development of KIDS algorithm theories for
general architectures; (2) management of constraints
during the design activity; and (3) migration of the
general technique away from VHDL.

An algorithm theory represents a general problem
solving technique. Using a multi-component architec-
ture is one such general technique, however no theory
exists for its application in the current KIDS system.
To extend these techniques to larger systems, general
algorithm theories must be developed. Proposed tech-
niques for batch sequential systems are shown here
and similar techniques are proposed for batch parallel.
However, more complex architectures must be devel-
oped, particularly for communicating systems.

Currently VSPEC represents several types of con-
straints. At each stage in the design process, these
constraints can be checked in the abstract syntax tree.
Thus, constraint violations can be detected. Of par-
ticular difficulty is management of propagation time.
Odyssey Research Associates [6] takes the approach
of associating events with time points in the interface
language. This requires using a temporal logic in the
verification activity. VSPEC uses an interval represen-
tation to define the time from input signal(s) arrival
to output signal(s) generation. This separates timing
issues from the functional specification. Although tim-
ing constraints can be verified, they must be included
in the actual synthesis process eventually.

Finally, the Generic Abstract Syntax Tree (GAST)
is being developed to serve as a general representation
for systems requirements. The objective is to either
adapt VSPEC to new source languages or use existing
Larch interface languages to generate GAST require-
ment representations. A parser is written to generate
GAST from each language and synthesis (and poten-
tially analysis) tasks performed on the GAST repre-
sentation. The resulting algorithms plus the GAST
representation are transformed into the output lan-
guage of choice. Note that both the input parsing
and output transformation are purely syntactic activ-
ities, thus existing technologies can be used to con-
struct these components. Using taking this approach,
VSPEC techniques may be more generally inserted in
the systems development and prototyping process.

10

306

8 Acknowledgment
Support for this work was provided in part by the

Advanced Research Projects Agency and monitored
by Wright Labs under the RASSP Technology Pro-
gram, contract number F33615-93-C-1316. The au-
thors wish to thank Wright Labs and ARPA for their
continuing support.

The authors wish to thank Dr. Paul Bailor, Mark
Gerken and Frank Young of the Air Force Institute
of Technology for their help and comments on this
research. In particular we wish to acknowledge their
contributions in architecture synthesis and the batch
sequential algorithm synthesis technique.

References
[1] L. Abraido-Fandino. An overview of refine 2.0. In

Proceedings of the Second International Sympo-
sium on Knowledge Engineering, Madrid, Spain,
April 1987.

[2] P. Alexander. Combining transformational and
derivational analogy in Larch specification gen-
eration. In Proceedings of The 6th International
Conference on Soßware Engineering and Knowl-
edge Engineering, pages 131-138, Riga, Latvia,
June 1995. Knwoledge Systems Institute.

[3] P. Bailor, M. Gerken, and F. Young.; Personal
communication, 1994. (technical report pending).

[4] D. Guaspari. Penelope: An Ada Verification Sys-
tem. In Proceedingsof Tri-Ada '89, pages 216-
224, Pittsburgh, PA, October 1989.

[5] J. Guttag and J. Horning. Larch: Languages and
tools for formal specification. Texts and Mono-
graphs in Computer Science. Springer-Verlag,
New York, NY, 1993.

[6] D. Jamsek and M. Bickford. Formal Verification
of VHDL Models. Technical Report RL-TR-94-3,
Rome Laboratory, Griffiss Air Force Base, NY,
March 1994.

[7] K. Jones. LM3: A Larch Interface Language for
Modula-3. Technical Report 72, DEC Systems
Research Center, Palo Alto, CA, 1991.

[8] Z. Manna and R. Waldinger. A Deductive Ap-
proach to Algorithm Synthesis. ACM Transac-
tions on Programming Languages andWystems,
2(1):90-121, 1980.

[9] D. Perry. VHDL. McGraw-Hill, New York, NY,
1st edition, 1991.

[10] C. Riesbeck and R. Schänk. Inside Case-Based
Reasoning. Lawrence Earlbaum Associates, Hills-
dale, NJ, 1989.

[11] Jayanta Roy, Nand Kumar, Rajiv Dutta, and
Ranga Vemuri. DSS: A Distributed High-Level
Synthesis System. IEEE Design&Test of Com-
puters, pages 18-32, June 1992.

[12] D. Smith. Top-down
and-conquer algorithms.
27(l):43-96, Sept. 1985.

synthesis of divide-
Artificial Intelligence,

[13] D. Smith. Algorithm Theories and Design Tac-
tics. Science of Computer Programming, 14:305-
321,1990.

[14] D. Smith. KIDS: A Semiautomatic Program De-
velopment System. IEEE Transactions on Süß-
ware Engineering, 16(9):1024-1043, Sept. 1990.

[15] United States Department of Defense, Washing-
ton, DC Reference Manual for the Ada Program-
ming Language, 1st edition, Feburary 1983.

11

